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CINNABAR OR VERMILION IN ANTIQUITY

■ In general:
-What is cinnabar? Mercuric sulfide: α-HgS
-Terminology (cinnabar & minium)
-Origin (natural & synthetic)
-Use (pigment, ink, preservative, cosmetics, 
rituals)

■ As a pigment
-Significance (socio-economic and artistic)
-Technology (extraction & application) 



What is the cinnabar problem?

The blackening!



Structural models of HgS phases: cinnabar (left) and metacinnabar (right). The 
metacinnabar structure is given here in terms of a tripled cell (3C setting) of the 
conventional cubic structure (a=5.852 Å). The equivalent hexagonal cell has 
aH=a /√2 and cH= a√3.

α-HgS β-HgS
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Table 1: List of raw samples studied with their origin, phase composition, 
and structural data obtained by XRD and cell refinement.



X-ray powder diffraction patterns for the the raw samples. While all cinnabar (α-
HgS) samples are phase pure,  both synthetic and natural metacinnabar (β- HgS) 
contain some cinnabar as phase impurity (reflections indicated with red triangles).
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Raman spectrum obtained for 
metacinnabar (β-HgS) polycrystalline 
material from Mont Diablo, CA, USA 
using a green laser of λ=540 nm.

Raman spectrum obtained for cinnabar 
(α-HgS) single crystal from Ukrania
using a green laser of λ=540 nm.
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Blackening of cinnabar
Effect of lasers and electrons
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Cathodoluminescence spectra of (a) single crystal cinnabar from Ukraine, 
(b) polycrystalline metacinnabar from CA, USA.,
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Effect of Grinding & heat treatment
(a) Single crystal cinnabar from Ukraine ground in air and (b) same sample 
after heat treatment at 100°C in air. Polycrystalline cinnabar from Spain, (c) 
ground under acetone, (d) ground in air, and (e) same sample in (d) after heat 
treatment at 100°C in air.
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Raman & cathodoluminescencfe of blackened cinnabar
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(a) Micro-Raman spectra  of 
blackened cinnabar obtained 
by grinding cinnabar from 
Spain in air after 1, 2, and 3 
minutes of exposure to the 
laser

(b) cathodoluminescence
spectrum of the same sample 
with CL images of the zones 
emitting in the UV (350nm) 
and in the red-orange 
(625nm).
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Effect of sunlight on the color of cinnabar paint films prepared with 
different media, exposed to direct Arizona sunlight for 8 months.
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Amorphization gradiant of cinnabar as a function of distance from the edge. Images a-
d correspond to points a-d in image e. Pigment was prepared in water and exposed to 
Phoenix, Arizona sunlight for 8 months. Images a-d were obtained using a Hitachi 
4700 Field Emission Scanning Electron Microscope (FESEM).
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Comparison of XRD spectra of the red and black zones in the previous plate. The 
reflection given here is (104) of cinnabar. Note the shift of the d-spacing of this plane 
toward a higher value, which is closer to that of metacinnabar (2.92Å).



Table 2: Chemical composition (expressed in atomic %) of a black
spot caused by irradiation with electrons (15KV, 10mA) as compared 
to that of a fresh zone.

Fresh Zone Irradiated Zone

Hg (Atomic %)
45.80 50.83

S (Atomic %)
54.20 49.17

Hg/S Ratio
0.85 1.03

% Sulfur 
Deficiency 0 18.26



CONCLUDING REMARKS

-Blackening of cinnabar is a physico-chemical & structural transformation process 
which is complex, but quite reversible.

-Several factors can induce the blackening of the pigment such as the radiation 
(electrons, lasers, sunlight)  and by mechanical activation/amorphization.

-The blackening cannot be attributed to the formation of cubic metacinnabar, as 
very often speculated, but to an intermediate  and amorphous phase. This was 
evidenced by the broadening of the XRD reflections, splitting of the band gap of 
the product, and by the SEM imaging. 

-SEM images also show that the amorphous product forms a passivating layer 
around the cinnabar grains/crystals that may inhibit further transformation, and 
which is consistent with the observations made on historical samples.

-The red vermilion color can be restored by moderate thermal treatment of the 
blackened pigment in air. Further work is still required to validate this statement.


