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ABSTRACT 
 

 

In recent years, a significant amount of research has been directed towards the 

development of prognostic methodologies to forecast the future health state of an 

engineering system assisting condition based maintenance. These prognostic methods, 

having furthered the maintenance practices for mechanical systems, have yet to be 

applied to historic masonry structures, many of which stand in an aged and degraded 

state. Implementation of prognostic methodologies to historic masonry structures can 

advance the planning of successful conservation and restoration efforts, ultimately 

extending the service life of these heritage structures.  

This multi-disciplinary research project, which builds upon the findings of the 

ongoing NCPTT-funded project on Structural Health Monitoring (SHM) to determine the 

health of the nation’s historic structures, aims to develop Life-Cycle Assessment charts 

for Preservation and Rehabilitation (LCA-PR) of historic structures.  Quantifiable 

parameters will be developed through the LCA-PR charts to evaluate not only the 

structural state of the heritage building, but also the effect of rehabilitation campaigns.  

Through this project, the PI will bring a novel idea to the preservation and management 

of historic masonry structures and address the NCPTT’s priority to “develop appropriate 

technologies to preserve houses of worship.” 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

1.1. Motivation  

The National Register of Historic Places lists 3290 Gothic style buildings in the United 

States, with 593 of those being houses of worship (National Park Service 2010). The need to 

maintain the nation’s aging and deteriorating heritage structures with constrained budgets poses a 

great challenge to infrastructure managers.  Therefore, it is essential to equip infrastructure 

managers with science-based techniques, rather than purely qualitative guidelines for prescribing 

maintenance and rehabilitation schemes. It is envisioned that science-based monitoring and 

assessment techniques, such as Life-Cycle Assessment charts for Preservation and Rehabilitation 

(LCA-PR) charts, described in this report, not only provide quantitative, scientifically defendable 

and real time measures on the integrity of the structure, but also evaluate the benefits of the 

preservation and rehabilitation campaigns. Quantitative information about the structural 

degradation can aid in the development of the most cost-effective, long-term infrastructure 

management plans that reduce both energy and material consumption, thusly yielding sustainable 

maintenance schemes for the nation’s cultural heritage. 

 

1.2  Background 

  Structural Health Monitoring is an established diagnostic technique that can detect, 

quantify, localize and classify structural damage based on changes in structural response (Farrar 

and Worden 2007).  Generally speaking, SHM is based on the structural dynamics concepts that 

a structure’s vibration response is related to its mass, damping, and stiffness properties. Changes 

in the structure, whether due to damage or rehabilitation efforts, will result in changes to these 
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properties, and thus an altered vibration response.  SHM often relies on in-situ vibration 

measurements to detect these changes in system properties and relate them to the structure’s 

overall state (Carden and Fanning 2004; Doebling, et al. 1996; Sohn, et al. 2004).  SHM 

implementation consists of three main stages: data collection, feature extraction, and statistical 

discrimination. Figure 1.1 outlines the SHM process. In this process, a negative discrepancy 

between the damaged structure’s response (ω) and the healthy reference point (ωR) indicates the 

structure has been degraded or damaged, while a positive discrepancy indicates an improvement 

in the structural functionality due to repair or recovery campaigns. This calculation can then be 

used to provide data to alert infrastructure managers of the health of a system (Dalton et al., 

2012). 

          

Data collection can be periodic or continuous and is achieved by placing sensors at 

strategic locations within the structure (Prabhu and Atamturktur, 2012).  The next step in the 

SHM process is to identify damage-sensitive response features and extract these features from 

the collection of data.  The utilization of real time, long-term monitoring technique of SHM is 

one of the components of the LCA-PR framework. 

_______________________ 

* Note: “th” represents threshold. This failure threshold is a conservative limit on damages level, beyond which the system is inadequate for its 

intended use.  

 

SHM Phase 1: 
DATA 

COLLECTION 

SHM Phase 2: 
FEATURE 

EXTRACTION 

SHM Phase 3: 
STATISTICAL 

DISCRIMINATION

 - 
R 

 < th* 

IMPROVED 
FUNCTIONALITY

 - 
R 

 = th 

SUSTAINED 
FUNCTIONALITY

 - 
R 

 > th 

REDUCED 
FUNCTIONALITY

Figure 1.1: SHM campaign methodology for health monitoring 
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Life Cycle Assessment (LCA), on the other hand, was originally developed to quantify 

the environmental impact that a product has over its entire lifespan. It is understood as “a cradle-

to-grave investigation and evaluation of the environmental, social, and economic impacts of a 

given product during the production, use, and disposal phases of its life”. LCA helps to 

determine the environmental and social tradeoffs between alternative designs or alterations in a 

product or system in an effort to improve sustainability. The concepts originally developed for 

LCA are adapted in the context of SHM in this study to develop the LCA-PR framework, further 

details of which are provided in the following section.  

 

1.3 Summary of Main Contributions 

As part of this report, Structural Life Cycle Analysis (S-LCA) charts, which can measure 

the structural sustainability of a structure in regards to its measured versus designed 

performance, are developed (Dalton et al., 2012). Figure 1.2 shows a conceptual view of the 

proposed S-LCA. The rate at which the decrease in structural functionality occurs depends upon 

the structural sustainability of the built system. Structural Sustainability is a measure of the 

degradation rate and inversely relates to the slope of the S-LCA curve. Figure 1.2 represents the 

lifespan for a structure that has been recently constructed. For an existing structure, a reference 

point of structural functionality must be determined according to the current structural condition.  
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Based on the S-LCA curve and the goal of preservation to ensure that historic structures 

survive for posterity, the new LCA-PR framework addresses and incorporates three scenarios: 

(1) gradual structural degradation from environmental and operational conditions, (2) rapid 

structural damage from disasters and (3) rapid structural improvement due to preservation or 

rehabilitation campaigns. While rapid degradation or improvement in structural integrity can 

only be evaluated after the occurrence of an event, the gradual structural degradation naturally 

allows for prognosis of future behavior. In this report, to predict the long term, gradual 

degradation of a structural system, prognostic methodologies are implemented into the LCA-PR 

framework. Such prognosis is accomplished by training Support Vector Regression (SVR) 

models with the data collected through sensors placed on the structure. In this prognostic 

approach, as more data is collected, the trained SVR model is refined and prediction accuracy is 

improved. Figure 1.3 schematically outlines the LCA-PR framework.  
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Figure 1.3: Flowchart of Report Contributions 

 

1.4  Organization of the Report 

Chapter Two of this report presents a review of not only the established literature on 

prognostic evaluation but also the available inspection techniques for masonry construction with 

an objective to relate these two disassociated areas of knowledge, thus laying the foundation for 

prognostic evaluation of historic masonry. The findings obtained in Chapter Two were submitted 

to The Masonry Society and have been conditionally accepted. 

Among the available techniques for prognostic evaluation, SVR shows particular 

potential for applicability to historic masonry structures as it is capable of handling the nonlinear 

responses of masonry assemblies due to the complexity of their materials and geometry. Chapter 

Three of this report presents the proposed adaptively weighted SVR approach. In this chapter, 
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the theoretical background for SVR as well as the algorithmic development for adaptive 

weighting is both presented. Furthermore, the application of this proposed approach is 

demonstrated on the settlement induced damage of a coastal fortification, Fort Sumter in 

Charleston.  

Chapter Four focuses on the establishment of a semi-empirical relationship to estimate 

the reduction in the load carrying capacity due to damage by exploiting the experimentally 

detected deviations in the natural frequencies for a tile dome. A finite element model developed 

to analyze the dome is calibrated against both non-destructive vibration measurements and 

destructive load-displacement measurements up to failure. The model is then executed to 

simulate incremental development of cracks. The first natural frequency and remaining load 

carrying capacity of the dome are monitored to define the desired empirical relationship, which 

is ultimately generalized for spherical domes with varying span-to-rise ratios. 

Chapter Five presents the experimental campaign for a wireless sensor network 

developed at Clemson University. The system was validated at Clemson before being deployed 

at Fort Sumter. The components of the wireless system are explained in detail and the findings of 

the testing performed are discussed.  
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CHAPTER TWO 
 

A REVIEW ON PROGNOSTIC EVALUATION OF HISTORIC MASONRY 
STRUCTURES 

 
 

2.1. Introduction 

Historic masonry structures are degraded by a multitude of physical, chemical and 

biological processes which subvert the material and structural characteristics of those 

monuments. At critical levels, the degradation caused by these processes may lead to structural 

failure and the loss of culturally-significant monuments. Examples throughout the last century 

include the 1902 collapse of St. Mark’s Campanile in Venice, Italy, the 1989 collapse of the 

Civic Tower of Pavia, Italy, the 1990 collapse of the Church of Kerksken, Belgium, the 1992 

collapse of a bell tower at the church of St. Maria Magdalena in Goch, Germany, the 1996 

collapse of the Noto Cathedral in Sicily Italy and the 2006 partial collapse of the Maagdentoren 

Tower in Zichem, Belgium. While such failures are typically sudden events, the processes of 

material and structural decline which precede these catastrophic events tend to be gradual, often 

going unaddressed for extensive periods.  

With on-site monitoring techniques opening new doors to the analysis of large-scale 

historic masonry structures, engineers may benefit from prognostic approaches. This new 

technology allows engineers to predict system performance and configure suitable maintenance 

and rehabilitation efforts, ultimately resulting in prolonged structural reliability and the 

preservation of significant cultural heritage.  

The goal of prognosis is to project the remaining useful life (RUL) of a system. Prognosis 

is accomplished by analyzing a system’s performance with the goal of making accurate 

projections about future system performance (as demonstrated in Figure 1).  The RUL which is 
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forecasted from performance data does not predict a system’s ultimate failure but rather reflects a 

convergence between the continued degradation of a system and the threshold selected to define 

the system’s functional inadequacy. With detailed RUL forecasts, condition-based maintenance 

(CBM) routines can be initialized to reflect a system’s current and future needs, as opposed to 

time-based maintenance schemes, which take place at predefined intervals without knowledge of 

the condition of the system. CBM can help avoid secondary damage stemming from exceedingly 

infrequent care, and can simultaneously limit the expenditure of resources (Jardine et al. 2006). 

 

Figure 2.1: Estimation of the RUL (printed with permission from Atamturktur et al. 

2013b) 

 

The success of CBM routines is however based on the accuracy and timeliness of the 

RUL prediction (Saxena et al. 2010). This prediction is dependent upon a variety of factors 

including system’s initial design and construction, its current health and the operational, loading 

and environmental conditions it endures. While easily conceptualized, these quantities are often 

imprecisely known and thus, the challenge becomes predicting not only the RUL of a highly 



9 
 

9 
 

complex system but also establishing a satisfactory level of confidence in the predictions. It is 

therefore necessary that an evaluation of the developing field of prognostics be conducted with 

critical attention given to its potential inclusion within efforts aimed at maintaining historic 

masonry structures. The cause of such a review stems from the potential benefits prognostic 

methods stand to offer the care-takers of historic masonry, namely a more intimate knowledge of 

these historic structures from which the most appropriate and effective maintenance routines 

might be derived.  

 The organization of the manuscript begins with a discussion in Section 2 of factors 

contributing to the degradation of masonry structures that are amenable for incorporation into a 

prognostic framework through the use of appropriate inspection methods. In Sections 3 and 4, 

the authors introduce common prognostic approaches and review various established prognostic 

algorithms. An overview of the future direction and challenges in applying prognostic techniques 

to historic masonry monuments follows in Section 5. Finally, concluding remarks are provided in 

Section 6. 

2.2.  Masonry Degradation and Assessment 

In the following two subsections are discussed a variety of chemical, biological and 

physical factors which routinely lead to the decline of historic masonry structures. In the last two 

subsections, common inspection techniques for historic masonry structures are overviewed for 

their potential implementation within a prognostic framework.   

2.2.1.  Masonry Degradation by Chemical & Biological Processes  

Chemical and biological processes attack the composition and durability of masonry 

materials. In many of these processes, water is a key factor which can both initialize and sustain 

the processes of weathering, ice formation, freeze/thaw cycling, capillary flow, and biological 
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growth (Grimm 1982; Collepardi 1990). Additionally, water from the surrounding environment 

provides a vehicle for the transportation of potentially hazardous particles and is involved in 

many of the subsequent chemical reactions that take place. Symptoms of water intrusion relevant 

to structural assessment may include plant growth, reduced freeze-thaw resistance, material 

expansion and contraction and chemical attack (Groot et al. 2004). The effects of this water-

induced degradation typically appear in the form of cracks, which alter the mechanical properties 

of the masonry materials (Grimm et al. 1988).  

In a process called biodegradation, agents such as mold, algae, bacteria and other plant 

life can act to degrade the mechanical properties of masonry materials (Mack et al. 2000). This 

mechanical deterioration can occur by way of the physical presence of these biological 

organisms and their byproducts which act to separate grains in the stone and mortar creating 

stresses that slowly break the material apart at the micro-scale. In the macro-scale, historic 

masonry buildings may fall under the attack of larger plant systems (Mishra et al. 1995). In 

addition to causing material cracking, extensive plant growth can increase fire hazards and help 

spread and sustain areas of heavy moisture. 

Additionally, stone masonry can be chemically affected by the well-known alkali-silica 

(or alkali-aggregate) reaction, which occurs at the mortar joint between alkalis present in the 

mortar and minerals within the stone. Furthermore, both stone and brick masonry are commonly 

subjected to the ill-effects of gypsum, a binder routinely used in historic masonry mortars, in 

which the presence of sulfate can cause degradation (West 1996; Duran et al. 2010).  

A prognostic framework for evaluating the effects of these chemical and biological 

processes must be grounded in knowledge of the rate at which the structural performance of 

historic masonry materials declines in time and how this degradation will ultimately affect the 
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integrity of these structures. Such information is currently not available in the literature for the 

chemical and biological processes discussed in this section. For instance, material deterioration 

caused by the presence of moisture, which can result in structural degradation, requires sufficient 

time to progress and short-term fluctuations make directly linking the in-situ moisture content of 

masonry to its structural health difficult. Therefore, while radar and thermography tests can 

determine the moisture content of masonry materials, this knowledge yields little information 

regarding the resulting structural integrity (Avdelidis et al. 2004; Binda et al. 2009). For a 

prognostic framework to be applied, it is necessary to determine a link between the severity of 

sustained damage, the mechanical properties of the damaged material and the integrity of the 

overall structure.   

2.2.2.  Material Degradation by Physical Processes 

Aside from overloading caused by short term events, which can occur by way of sudden 

foundation settlement, earthquakes, or war-time bombardment, historic masonry structures are 

also subjected to a variety of physical processes that slowly degrade the building materials. 

Wind, snow and ice, wave action, external vibration and the repeated fluctuation of ambient 

temperatures can all contribute to the reduction of a material’s integrity, increasing the 

probability of crack formation and the eventual large-scale deterioration of important structural 

components.  

In urbanized areas, historic masonry structures can also be affected by vibrational 

disturbance arising from nearby vehicle traffic. These urban vibrations, typically between 5 and 

25Hz, are created by large vehicles as they pass over irregularities in road surfaces (Hunaidi 

2000). In many cities, the distance between heavily trafficked streets and historic masonry 

structures is not sufficient to shield these structures from resulting vibration. Examples of 
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reported masonry degradation stemming from traffic vibration are given in the vault cracking of 

the St Thomas Church in Prague, damaged frescos in Rome’s Villa Farnesina and in the Palace 

of Art in Budapest where foundation settlement has been attributed to nearby heavy traffic 

(Rainer 1982).   

Furthermore, many medieval masonry structures throughout Europe are reported to lean 

towards adjacent roadways as traffic-induced vibration has induced uneven settlement (Rainer 

1982). These sustained vibrations can worsen the already common problem of foundation 

settlement amongst historic masonry, which stems from the large weight of the structures 

coupled with the inadequate and often deteriorating soil bearing capacities (Chiorino et al. 2011). 

As masonry is primarily designed to carry loads in compression, the tensile stresses resulting 

from differential support settlement can induce cracking, which in severe cases can lead to 

structural discontinuities and inelastic hinges (Atamturktur et al. 2011).  

Moreover, research has indicated that creep, a material process involving the gradual 

plastic deformation of a structural element under sustained load, may play a role in the sudden 

collapse of masonry systems (Henriques et al. 2003; Binda et al. 2000). Evaluation of materials 

gathered from the recent collapses of the Civic Tower of Pavia and the Tower of Maagdentron 

confirmed that strain rates in masonry increase over time through unique phases which might 

offer engineers a means of monitoring these culturally significant monuments (Anzani et al. 

2008).  

Additionally, where considerable ambient temperature fluctuations are present, they have 

been linked to masonry degradation. In the summer months, increased exposure to direct sunlight 

elevates daytime surface temperatures while later exposures to nighttime air can present 

differences up to 50°C. In winter, the relatively low temperatures of the stone surfaces can result 
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in significant tensile stresses within the material. These temperature variations cause strains in 

the mortar, masonry units and bond region causing cracks in the masonry assembly (Twelmeier 

et al. 2006). When water is also involved and the masonry is saturated, structures in colder 

climates also endure the effects of repeated freeze-thaw cycles which can impart significant 

damage over time. This damage expedites the deterioration of the mortar, once again causing 

cracking in the masonry assembly (Hopps et al. 2012).  

Each of these processes of physical degradation act to slowly degrade the mechanical 

properties of masonry materials and thus, the prevalence and severity of such processes must be 

monitored over the life of the structure. A vital question that remains to be answered is how this 

physical degradation (of a component or the entire structural system) can lead to a decline in 

structural integrity (perhaps quantified by remaining load carrying capacity). Experimentally 

substantiated computer models can be employed while estimating the degradations in load 

carrying capacity due to damage (see for instance, Atamturktur et al. 2013). Such estimates can 

ultimately transition real-time observations obtained through non-destructive measurements to 

information regarding the integrity of the structure and lead to better-planned maintenance 

campaigns.  

2.2.3.  Common Forms of Masonry Inspection & Assessment 

In the case of historic masonry, the process of structural assessment typically begins with 

manual inspection, which is often laborious and limited to generating qualitative and subjective 

descriptions (Ozaeta et al. 2012; Atamturktur et al. 2013a). To obtain quantitative information, 

semi-invasive techniques such as flat-jack tests are commonly deployed to measure the local 

stresses and strains in a material (Binda and Tiraboschi 1999). These semi-invasive methods are 

commonly applied to historic masonry and are more desirable than those which involve drilling 



14 
 

14 
 

or cutting material coupons for laboratory evaluation of the material’s composition and overall 

condition. Of course, the risk of increasing both aesthetic and structural damage makes even 

semi-invasive techniques unappealing on the most culturally-significant sites (Schuller et al. 

1995). If nothing else, semi-invasive tests are often limited to hidden areas of a structure leading 

to concern over how engineers might assess the more exposed facades of historic masonry which 

must be delicately treated and carefully preserved.  

Providing a potential solution are non-destructive testing methods (NDT) which represent 

less intrusive alternatives for evaluating masonry structural elements. A wide array of useful 

comparisons of available NDT methods can be found in the literature (McCann & Forde 2001; 

Popovics 2003; Harvey & Schuller 2010). While each evaluation technique typically offers some 

advantage, experience and application tend to govern the selection of NDTs. Factors including 

relative cost, test complexity, necessary experience or training, structure size and evaluation 

parameters of interest help separate NDTs. Figure 2 offers a comparison of commonly deployed 

NDTs 

 

Inspection 
Method 

Parameter 
Measure 

Advantage Disadvantage Cost 

Visual Surface condition 
Quick; modest skills 
required 

Superficial Low 

Proof load 
testing 

Load carrying 
capacity 

Definitive 
Very slow and possibly 
dangerous 

Very high 

Coring 
Mechanical 
properties of core 
samples 

Yield accurate values 
of mechanical 
properties 

Measurement only at test 
point; scars the structure 

Moderately 
high 

Vibration testing 
Mode shapes and/or 
signature 

Gives some indirect 
measure of current 
condition 

Difficult to quantify 
data; heavily damped 
masonry yields little 
response 

High 
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Impact testing 
Mode shapes and/or 
signature 

Gives some indirect 
measure of current 
condition 

Difficult to quantify 
data; heavily damped 
masonry yields little 
response 

Moderate 

Ultrasonic NDT 
Wave velocities 
through structure 

Relatively quick 

Only works on 
individual masonry 
blocks due to signal 
attenuation; no 
information on major 
elements 

Moderate 

Sonic 
Wave velocity; 
tomographic  
cross-sections 

Moderately quick; 
gives useful 
information on major 
elements 

Requires skill to 
interpret data 

Moderately 
high 

Conductivity 
Relative 
conductivity 

Quick; gives relative 
conductivities over a 
large area to a 
maximum depth of 
1.5m 

Limited depth 
penetration of 1.5m;  
complements radar 

Low 

Radar 
Electromagnetic 
wave velocity 

Quick; good 
penetration; yields 
good image of internal 
structure 

Poor penetration through 
clay infill; requires  
skill to interpret data 

Moderately 
high 

Figure 2.2: Tests applied to civil structures (reprinted with permission from D.M. 

McCann & M.C. Forde, 2001) 

One of the most commonly deployed NDTs is surface penetrating radar (Solla et al. 

2012; Labropoulos & Moropoulou 2013). This approach analyzes the local uniformity of a 

material and can determine the location of voids (Orban & Gutermann 2009). Other NDTs such 

as the acoustic impact method (Anzani et al. 2010), the impact-echo method (Sadri 2003), the 

ultrasonic wave propagation method (Na et al. 2002) and sonic tomography make use of 

mechanical compression waves. Additionally, infrared thermography is another popular 

technique which has shown an ability to detect delamination, internal voids and local material 

uniformity despite its sometimes limited penetration depth (Avdelidis & Moropoulou, 2004; 

Cotic et al. 2013). 

Overall expense and complexity represent the drawbacks of most NDTs as these methods 

typically make use of advanced technology and commonly require expert analysis of the results. 

Furthermore, the aforementioned NDT methods are typically local in nature, meaning that they 

measure localized properties of the system. Similar to their more invasive counterparts, these 
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NDT methods require a priori knowledge of damage as their application typically covers only a 

specified area resulting in costly, repetitive testing if applied extensively (Bosiljkov et al. 2010). 

One way in which the need for preliminary knowledge can be eliminated is through the use of 

techniques which monitor a structure’s global properties. One such example of a global NDT 

method is vibration testing, which has only begun to be adapted to historic masonry 

(Atamturktur et al. 2012).  

2.2.4.  Vibration-Based Structural Health Monitoring Techniques 

The assessment of civil structures has begun to advance with the implementation of 

structural health monitoring (SHM), particularly that of dynamic or vibration-based analysis 

(Aguilar et al. 2009). Vibration-based SHM primarily involves dynamic testing whereby sensors 

are strategically placed to observe the response of a structural system to ambient or imposed 

vibrational excitation. Data is collected before being interpreted by computer algorithms which 

allow engineers to determine dynamic features, such as the structure’s natural frequencies and 

modal response. As the structure’s response to external loading changes, up-to-date 

measurements are compared with original (or idealized) states to form an assessment of the 

structure’s overall condition or health (Beck et al. 1994; Doebling et al. 1998). A great deal of 

existing literature is devoted to the research, technology and application of vibration-based SHM 

in the field of large civil infrastructure such as buildings, bridges and dams (Lynch 2006; Chang 

et al. 2003; Farrar et al. 2007; Brownjohn 2006). Some of the practical challenges of adapting 

SHM include continuous data transfer from the site, optimal placement of sensors (Prabhu et al. 

2012), degrading effects of ambient vibrations, determination and identification of the most 

damage sensitive features (Prabhu et al. 2011; Aguilar et al. 2009) and selection of an 

appropriate algorithm for data interpretation. 
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Vibration-based SHM techniques are appropriate for application within a prognostic 

framework for historic masonry structures (De Stefano 2009; Samaras et al. 2012; Atamturktur et 

al. 2012; Atamturktur et al. 2013). However, there is a mismatch in what is being measured on 

site (dynamic characteristics of a structure, primarily related to stiffness) and what an engineer 

needs to know (load carrying capacity of a structure, primarily related to strength). Therefore, 

engineers must first directly link the measured changes in vibration response to changes in the 

system’s structural integrity and ultimately to RUL predictions (Atamturktur et al. 2012). 

Furthermore, relating variations in global system response to various forms of localized damage 

and to the location and severity of such damage remains a current challenge in SHM. These 

issues depend on the unique material and geometric properties of structure under observation as 

well as the damage type of interest.  

Finally, structural failure of a masonry construction tends to be sudden and often 

unexpected. Prognostics on a most fundamental level must be able to utilize SHM to not simply 

predict failure but do so in sufficient time that appropriately schedule maintenance might provide 

an alternative outcome (Carrar et al. 2007).   

2.3.  Prognostic Approaches 

Prognostic frameworks fall within two families: model-based and data-driven. Model-

based approaches consider the entirety of a physical system through the use of a numerical 

model and attempt to produce RUL forecasts based on simulations (Atamturktur et al. 2012). 

Model-based approaches benefit from the incorporation of a physical understanding of the 

system and thus have potential to significantly outperform their data-driven counterparts, 

particularly when varying load conditions are presented (Luo et al. 2003). While powerful, 

model-based techniques are most commonly developed for relatively small components where 
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minute material and mechanical failures represent substantial threats to system reliability (Gu et 

al. 2008). In the case of larger structures, the demands of creating such models are extensive. In 

those instances significant time must be invested into model development and calibration while 

the often complex physical laws of the system must be diligently scrutinized.   

By comparison, data-driven methods are more adaptable in that they specialize in the 

rapid creation of prognostic models even where the systems governing physics, present 

condition, environment and future loads are imprecisely known. Thus, most forms of engineering 

prognosis concerned with the study of large-scale structures are data-driven. Over the last two 

decades, advances in sensor technology have increased engineers’ ability to measure and record 

complex systems, however data interpretation remains a primary challenge. Stemming from the 

field of data-mining, the goal of data-driven prognostics is to reveal and extract empirical 

relationships existing within given data sets. Distinctive signatures from the data, known as 

features, are analyzed using prognostic algorithms which listen for changes throughout the 

system’s lifetime. The challenge of interpreting data requires engineers to establish criterion for 

damage detection and to balance it with a model’s insensitivity to small, irrelevant, short-term 

changes, also known as noise. Failure to exhibit such insensitivity to noise can lead to 

predictions that are skewed and inaccurate. Often termed over-fitting, this issue arises when a 

learning algorithm or model is highly influenced by noisy data with unwanted and misleading 

outliers. If interpreted correctly however, patterns within data can lead to RUL predictions under 

the assumption that a data set’s features remain consistent unless the condition of the system has 

changed (Luo et al. 2008).  

By their nature, data-driven methods have the inherent disadvantage of untoward reliance 

upon the quantity and quality of the system’s operational data. Thus, insufficient historical or 
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operational data can limit the training and fidelity of data-driven techniques used to obtain health 

estimates and determine trend thresholds used for RUL predictions (Pecht et al. 2010). 

Furthermore, classification involving the nature of degradation, particularly amongst complex 

systems, also provides a distinct challenge (Sohn et al. 2003). A complementary introduction to 

and comparison of several data-driven approaches is provided in the literature (Schwabacher 

2005; Goebel et al. 2008; Si et al. 2011) and subsequently discussed at length in section 4 where 

the adaptation of various data mining algorithms to prognostics are discussed. 

2.4.  Prognostic Algorithms  

This section presents a brief description of widely implemented prognostic algorithms as 

well as a review of the challenges facing their deployment in both historic masonry and 

prognostic applications.  

2.4.1.  Common Concepts within Data-Mining 

Data-mining algorithms are routinely deployed upon engineering problems involving 

classification and regression; terms that relate to health monitoring within diagnostics and 

prognostics, respectively. In classification problems, the algorithm is tasked with establishing the 

boundary between clusters within a separable data set (Basak et al. 2007; Ji et al. 2010). 

Accurately-trained models resulting from such classifier algorithms can be used in diagnostics to 

interpret data as representing damaged and undamaged states.  

By its nature data-driven prognosis is a regression problem demanding the creation of a 

model capable of forecasting RUL given sufficient historical data. Thus, many advanced 

classifier algorithms have been evolved for suitability in regression analysis (Witten et al. 2005). 

Within this process, data occupying a space of n-dimensions (where n corresponds to the number 

of features used to describe a system’s health) is analyzed for patterns in the time domain. In a 
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process known as training, the algorithm makes use of a subset of the available data to refine a 

series of competing model hypotheses while using subsequent data points to calibrate the 

model’s predictive accuracy. In this way machine learning in prognostic applications falls under 

the heading of supervised learning, meaning that the algorithm’s model is calibrated with output 

describing a known health state (i.e. a damaged or undamaged).  

2.4.2.  An Overview of Available Algorithms 

Decision trees, statistical learning algorithms and instance based learning are examples of 

more basic machine learning techniques which can be pulled from the world of data mining. 

These approaches offer three advantages: an ability to operate on relatively small data sets, an 

ability to handle a large number of data parameters and an easily understood system of output 

classification. However, the basic structure of these approaches limits their accuracy. Amongst 

these algorithms, over-fitting, a model’s unwanted sensitivity to irrelevant fluctuations in data, is 

of particular concern as the presence of regularly fluctuating ambient loads is expected to cause 

such noise. While attempts to ‘smooth’ the data can be applied during the collection phase, an 

algorithm’s ability to avoid over-fitting remains of great significance (Atamturktur et al. 2013). 

More advanced approaches can be called upon. Two forms of machine learning that have 

gained significant popularity over the last several decades are Neural Networks (NNs) and 

Support Vector Machines (SVMs). These improved forms of machine learning are comparatively 

robust in nature and trade away the quick-but-unreliable traits of simpler algorithms for several 

improvements: increased accuracy on larger data sets, an ability to handle highly interdependent 

data features and a higher level of noise tolerance. Compared to their predecessors, both NNs 

and SVMs represent advances in machine learning algorithms in their ability to handle more 
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complex data sets with less bias, a characteristic that can lead to predictions of greater accuracy 

and reliability (Burges, 1998).  

In some cases, it may prove ideal to combine such algorithms with model-based 

techniques within a fusion approach in an effort to create a ‘best of both worlds’ scenario where 

the strengths of one method offset the weaknesses of the other.  This combined approach may be 

the most ideal prognostic approach to culturally-significant historic masonry monuments when 

sufficient data is available to support the development of a physics-based damage model. 

Nevertheless, the question still remains as to the selection of a particular algorithm for prognosis. 

Thus, in the following subsections a review is given of current algorithms involved in an array of 

prognostic applications.  

2.4.2.1. Neural Networks 

NNs create a computational structure which simulates the interconnected neurons within 

the brains of animals. In much the same way, the computational ‘network’ can interpret and learn 

from the information with which it is supplied. Within a NN, neurons are replaced by nodal 

points which have associated mathematical functions. As data is input into the system and 

distributed throughout the nodes the role of the mathematical functions is to weigh the data 

values accumulating at a particular node and to pass on a meaningful value, such as a weighted 

average. These functions, which are often algebraic equations, typically start with random 

coefficients which are tuned through back-calculation involving training data which has already 

been mapped accurately. With careful selection of neuron population, NNs can rapidly produce 

accurate numerical representations describing data sets in practice. A more detailed description 

of the conceptual and technical workings of NNs is available in the literature (Dougherty, 1995).  
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Figure 2.3: Nodal layout of artificial neural network (printed with permission 

from Nagy et al. 2002). 

 

Within civil engineering, NNs have been applied within nearly every field including 

construction schedule simulations (Arafa and Alqedra 2011), seismic hazard mapping (Chen et 

al. 2010), structure response monitoring for vehicle identification (Windrow et al. 1994) and 

modal response of historic buildings (Bartoli et al. 2012). NNs have also been widely 

implemented for detection of damage within the context of structural health monitoring. For 

instance, DeLautour and Omenzetter (2009) adapted a NN for damage detection of a 3-storey 

ASCE Phase II Experimental Benchmark Structure. Their method hinged on the inclusion of data 

describing the undamaged structure, which authors suggested should be gathered from an 

analytical model. In a similar application, the residual strength in a damaged concrete member 

under stress was linked to ultrasonic wave propagation measurements using an NN (Shah et al. 
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2012). The authors recommended their method be used along with nonlinear ultrasonic testing. 

NNs were also used to model the relationship between structural properties to environmental 

factors. For instance, Ko and Ni (2005) found that an NN was capable of accurately modeling the 

relationship between the modal frequencies of a bridge and the surrounding ambient temperature.  

Perhaps more relevant for prognosis, NNs have also been adapted to study creep-

deformation. Creep-deformation is relatively new topic of discussion among historic masonry 

experts and has in fact become a primary suspect within recent masonry collapses. Additionally, 

this long-term process has been shown to be suitable for monitoring. In El Shafie et al. (2009), it 

was shown that the ability of NNs to model long-term creep deformations greatly outperforms 

traditional methods of curve-fitting. The ability of NNs to accurately predict creep-deformation 

could prove helpful within a prognostic framework, particularly if additional research confirms 

that such processes indeed contribute significantly to large-scale collapse. 

Research on the prognostic capabilities of NNs is presently limited to isolated 

applications outside of civil engineering. For example, Wang and Vachtsevanos (2000) studied 

the predictive capabilities of dynamic wavelet neural networks, while incorporating stability 

analysis, uncertainty management and performance assessment using a defective (cracked) 

bearing through which they demonstrated the NNs potential for prediction. The authors proposed 

future research be conducted on a neuro-fuzzy version of their algorithm incorporating 

Dempster-Shafer theory to assist in the control of uncertainty. Shao and Nezu (2000) proposed a 

similar approach to predicting bearing life using a novel progression-based method for predicting 

RUL. The authors displayed a NN capable of accurate predictions describing the state of the 

damage mechanism within a bearing while including environmental effects. If such techniques 
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can be adapted to large-scale systems, such as those in historic masonry, the benefits could shape 

and guide maintenance efforts to avoid catastrophic events such as collapse.   

2.4.2.2. Support Vector Machines 

SVMs, another form of classifier, balance model complexity with fitting error according 

to the structural risk-minimization principle (Vapnik 1998). In doing so, SVMs seek to establish 

the boundary between two data clusters most efficiently by maximizing the margin (Figure 1), a 

term given to the distance separating those points in different data clusters which find themselves 

nearest each other. This concept makes SVMs relatively powerful algorithms capable of 

increased accuracy in many classification applications. Like NNs, SVMs are proven highly 

successful in applications involving non-linear classification. Given a nonlinear data set, an SVM 

can apply kernel functions which map the nonlinear data into higher-dimensional space where 

similar methods to those performed on linearly-separable data sets can be applied successfully. 

 

Figure 2.4: Establishing of the margin and support vectors (printed with permission from 

Atamturktur et al. 2013b). 
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When used for regression, SVMs produce models demonstrating high levels of accuracy 

using multi-dimensional or continuous data while avoiding the sensitivity to irrelevant features 

and extraneous noise that can plague neural networks (Kotsiantis 2007).  Stepping beyond the 

limited abilities of NNs in regards to generalization, support vector regression (SVR) can allow a 

predetermined degree of generalizability, or flatness, in the model to achieve optimization 

without over-fitting (Xu 2012). Thus, by combining high levels of accuracy with improved 

capability for generalization and an ability to handle very high non-linearity, SVMs outperform a 

number of competing machine learning algorithms (Thissen et al. 2003).  

Ko and Ni (2005) compared the performance of the NN model with those of linear and 

nonlinear regression models as well as a SVM model. The NN and SVM models showed 

increased predictive ability with the SVM model displaying a heavy reliance upon the selection 

of optimally-determined coefficients. To mitigate this heavy reliance, Atamturktur et al. (2013) 

used adaptively weighted SVR to support prognostic efforts on an historic masonry coastal 

fortification in Charleston, South Carolina. In an attempt to limit over-fitting, this method sought 

to minimize the effects of extraneous noise on model complexity thereby producing a model with 

increased generalizability, or flatness. This was accomplished by the inclusion of a user-defined 

weighting factor relating model accuracy and flatness which was iteratively adjusted to fit new 

input data.  

An additional concern rises, as it did with much of the research conducted on NNs in 

prognosis, over the fact that SVMs lack probabilistic outputs. A relevance vector machine 

attempts to address this problem by using a Bayesian framework. A relevance vector machine 

uses probabilistic kernels to reject the effects of outliers and the varying number of data points at 

different time steps. This method requires fewer kernel functions while giving comparable 
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results for generalization compared to support vector machines. In a case study for estimating the 

RUL of batteries, a combined relevance vector machine and particle filter method gave more 

accurate and precise RUL predictions in the form of probability density functions compared with 

the autoregressive integrated moving average and extended Kalman filter methods (Saha et al. 

2009).  

2.5. Challenges and Future Direction in Prognostics as Applied to Historic Masonry 

Construction  

Challenges arise in a variety of forms when one attempts to build a prognostic framework 

for historic masonry structures. Beginning with the structures themselves, future research must 

provide the crucial insights into how chemical, biological and physical degradation affect the 

mechanical properties of the material commonly seen through historic masonry construction.  

The techniques involved in structural health monitoring, namely those of dynamic analysis, may 

provide the critical means of establishing a framework for continuous health monitoring. But 

without critical review of what material degradation means for a masonry monuments structural 

condition, no link can be established between that structure’s present condition and its future 

health.  

Assessing the current approach to prognosis identifies the presence of uncertainties as 

another major issue impeding the application of prognostics to historic masonry structures. In 

model-based approaches, uncertainties arise from assumptions made during model creation. 

Masonry materials tend to be very complex and often behaves non-linearly as a result of the 

properties of the constituent materials (i.e. brick/stone, mortar, grout, and accessory materials) 

and even more so when accumulated degradation and damage is present (Atamturktur and 

Laman 2012). These properties must be acknowledged to accurately model a masonry structure 
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and assess its damage state (Capozucca 2011). Additionally, uncertainties in model input data are 

caused by variability in material properties, construction inconsistency, and the required 

estimation of the initial state of the system. In data-driven approaches, uncertainties exist within 

measurements due to the inability of practical systems to perfectly detect the global structural 

response, the dependency of the measured structural response to input force levels, the 

nonlinearity introduced by existing structural damage (i.e. opening and closing of existing 

cracks) during non-destructive evaluation as well as the loss of information in data reduction. 

Within either prognostic approach, the accuracy of the prognostic method is affected by how 

well these relevant uncertainties are addressed (Saxena et al. 2010). 

Limitations in resources make it impracticable to fully detect every form of damage in an 

historic masonry structure. Non-destructive and semi-invasive inspection techniques, which are 

more suitable for the analysis of historically significant structures, are unable to provide 

equivalent knowledge of the strength and performance of a structure obtained from destructive 

testing (De Stefano et al. 2006; Atamturktur et al. 2012). Therefore, further research is required 

which can link the changes in the non-destructively measured quantities to the integrity of the 

structural system.  

Moreover, the selected response features must be sensitive to the damage types of 

interest. However, sensitivity of these features to damage depends on each unique structure as 

well as the type and severity of damage present. As no one particular response feature is 

sensitive to all damage types, collection and assimilation of multiple response features increases 

the likelihood of encompassing various damage types in an assessment of the overall health state 

of the masonry structure. Furthermore, past research has shown that the sensitivity of response 
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features may also vary with damage level (Prabhu et al. 2012); thus future studies should 

evaluate the sensitivity of response features for variable damage levels.  

Additionally, response features that are insensitive to extraneous noise due to natural 

variability in environmental and/or operational conditions are desirable. Many response features, 

especially those that are indicative of the dynamic behavior of a structure, are influenced by 

operational or environmental conditions, such as wind, temperature, and excitation level. 

Although it is a customary to incorporate temperature and wind measurements in the diagnostic 

processes applied to civil infrastructure systems, for historic masonry structures the effect of 

moisture absorption on the structure’s stiffness and mass and consequently its dynamic response 

must also be considered (Ramos 2007). 

An entirely separate, but potentially more challenging issue is that monitored features 

must provide a global assessment of the structural system instead of indicating localized 

behavior. The difficulty of exciting the structure uniformly through controlled excitation devices 

makes obtaining global vibration responses challenging. An additional challenge brought forth 

due to the flexibility of masonry structural joints, appears in the fact that the behavior of 

connections between masonry structural components relies on the frictional and mechanical 

properties of the materials and thus tends to be load dependent. Practical difficulties in global 

response identification such as optimal sensor and excitation location (Prabhu et al. 2012) must 

also be resolved.  

An alternative to global assessment is distributed prognostics, an evolution of current 

prognostic architectures influenced by the emergence of smart sensors. The application of these 

smart sensors may relieve large, computationally-powerful central computing hubs of the burden 

created by continuous assessment. Within distributed prognostics, the task of data analysis in 
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health monitoring can be passed from the central hub to the smart sensors which themselves 

generate prognostic forecasts for the sub-systems which they monitor. Because large structures, 

particular historic masonry, are often large in size and complex in behavior, it may be more cost 

effective to analyze different parts of the system separately with these new sensors. Through the 

use of sub-models, the accuracy of local predictions can be enhanced with more traditional 

prognostic methods building upon this information. (Daigle et al. 2011).  

Information provided by the selected response features must be straightforwardly linked 

to the structural integrity of the historic masonry structure. As the relationship between health 

quantities, such as a structure’s remaining load carrying capacity, and commonly implemented 

response features in diagnostic evaluations are currently unknown, future research establishing 

the link between features and structural integrity is imperative.  

Hence, not only must the most appropriate damage sensitive features for monitoring 

historic masonry be determined, but these features must be interpreted to determine the stability 

as well as the overall performance of the structure. Measuring these features through a 

continuous structural health monitoring process, could increase the availability of data collection 

for more accurate RUL predictions, providing advanced warning of unfavorable structural 

conditions. 

2.6. Conclusion 

Prognostic techniques stand as a potential framework in which knowledge of time-

dependent degradations and their effects can be utilized in forecasting the future health and life-

expectancy of an historic masonry structure. While currently unapplied to this form of structure, 

prognostic methods have been under development in other damage-sensing fields. Lessons 

learned there can help guide structural engineers evaluating historic masonry. Through the 
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application of prognostics, engineers might better understand when these structures are most 

vulnerable and enact condition based maintenance to avoid continuing damage and ultimate 

collapse. 

In this report, the authors elucidated several masonry degradation schemes and inspection 

methods for their applicability within a prognostic approach. General concepts in prognostics 

were emphasized in the Introduction prior to a subsequent literature review covering masonry 

degradation, inspection and vibration-based SHM. The authors also presented model-based and 

data-driven prognostic approaches coupled with a discussion of specific methodologies that may 

be adaptable to masonry structures. Next, the authors reviewed the adaptation of pattern 

recognition techniques, namely machine learning algorithms, to prognosis. Depending on data 

availability and prior knowledge of the structure, an appropriate prognostic approach and 

algorithm should be selected for predicting the RUL of the particular historical masonry 

structure. Finally, challenges and future work in employing prognostic techniques to historic 

masonry were discussed. 

Depending on the budget and desired accuracy, model-based prognostics implemented in 

combination with data-driven approaches, when sufficient historical data is available, may be the 

most effective prognostic approach to masonry. Once the future state of the structure is projected 

and RUL predictions are estimated, effective maintenance can be scheduled to protect historic 

masonry structures. 
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CHAPTER THREE 
 

ADAPTIVELY WEIGHTED SUPPORT VECTOR REGRESSION: PROGNOSTIC 
APPLICATION TO A HISTORIC MASONRY  

COASTAL FORTIFICATION 
 
 

3.1. Introduction 

In recent years, a significant amount of research has been directed towards the 

development of prognostic methodologies to forecast the future health state of an engineering 

system assisting condition based maintenance. However, applications of these potentially useful 

and informative techniques to historic masonry structures are rare, if any. Developing prognostic 

methodologies for deteriorating historic masonry monuments and infrastructure affords the 

possibility of ensuring structural safety, reducing maintenance costs, and preventing secondary 

damage of such cultural heritage. 

Among available prognostic models, Support Vector Regression (SVR) shows a distinct 

potential for application to historic masonry construction as it offers high accuracy, provides 

good generalization, and handles nonlinearity (Müller et al. 1997; Samanta and Nataraj 2008; 

Haydock and Atamturktur 2013). The predictive performance of SVR however, relies on the 

complexity of the model determined by the tradeoff between fitting accuracy and flatness. The 

dual objective of SVR then seeks to find the flattest possible model while simultaneously 

minimizing fitting error (Smola and Schölkopf 2004). The theory of SVR recognizes that more 

complex models may have greater fitting accuracy but are less generalizable to other datasets of 

similar underlying processes (Myung 2000). The optimal weight, defining the relative 

importance of flatness to fitting accuracy, however is dependent upon the noise resulting from 

extraneous loading conditions, such as live, wind, or temperature loads that are time-variant. It 

must be noted that such extraneous loading conditions are different than causal effects of long 
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term deterioration. Therefore, it becomes important to adjust the weight as new measurements 

become available to obtain a model complex enough to provide a close fit to data but simple 

enough to predict global trends well.  

The article begins with a review of established literature on prognostic evaluation in 

Section 2. Main concepts and governing equations for SVR are given in Section 3 followed by a 

discussion on the adaptively weighted SVR approach. Section 4 then presents the historic 

masonry case study structure and applies the adaptively weighted SVR to improve forecasting 

accuracy in the prognostic evaluation. A discussion of the results as well as a summary of the 

contributions of this study concludes the chapter in Sections 5 and 6. 

3.2. Background on Prognostic Evaluation of Historic Masonry 

Prognosis, in the context of structural health management of engineering systems, is the 

estimation of a system’s remaining useful life, beyond which, corrective action is required 

(Saxena et al. 2009). Prognostic techniques are suitable for forecasting gradual degradation 

processes as opposed to damages caused by sudden unpredictable events. Thus, prognosis is an 

acausal problem, meaning that it requires knowledge of future loading and operating conditions 

to make accurate predictions. As future conditions are typically unknown and uncontrollable, 

conjectures of expected future loading environments must be made based on the history of the 

structure (Saxena et al. 2010).  

The main objective in the implementation of prognostic techniques therefore is to enable 

educated planning of maintenance of the evaluated system (EI-Tawil et al., 2011). Such 

improvement in the management of engineering systems has been made possible by prognostic 

evaluation in many fields; however, prognostic evaluation of masonry heritage structures is in its 

infancy. With prognostic techniques fully developed and successfully applied to historic masonry 
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monuments, timely condition-based maintenance and restoration efforts can be planned and the 

life of such heritage structures can be prolonged.  

Masonry construction is prone to experience gradual degradations affecting structural 

integrity in two forms: material degradations resulting mainly from environmental impacts, and 

structural degradations resulting mainly due to applied loads or movement of supports (Haydock 

and Atamturktur 2013).  Of the latter, differential support settlements are common in masonry 

structures due to the heavy weight of the construction and are particularly detrimental to the 

integrity of the structure due to the low tensile capacity of unreinforced masonry.  

Non-destructive inspection techniques with potential to be automated that provide an 

indication of the global (rather than local) structural integrity are desired for prognostic 

evaluation of historic masonry structures. Particularly, vibration responses that monitor damage 

sensitive features supply a viable solution to providing a diagnostic assessment of the structure. 

3.3. Methodology 

This section briefly discusses the theory behind support vector machines for regression 

(SVR) and introduces an approach for adaptively weighting the flatness to fitting accuracy in 

training SVR models to improve prediction accuracy.  

3.3.1 Support Vector Regression 

Motivated by results of the statistical learning theory (Vapnik 1998), Support Vector 

Machine (SVM) is a learning algorithm based on the structural risk-minimization principle, 

which finds a balance between model complexity and fitting error (Xu et al. 2012).  In contrast to 

other machine learning approaches, such as neural networks, that are prone to overfitting the data 

and having poor generalization capabilities, SVM can allow a predetermined degree of flatness 

in the model to avoid overfitting (Burges 1998; Xu et al. 2012). Furthermore, most SVMs solve a 
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quadratic programming problem, which finds the optimal solution and assures that the obtained 

solution is the unique global solution  

Originally created for cluster analysis of datasets belonging to separate classes or 

categories, SVM seeks to maximize the margin around the linear hyperplane dividing the linearly 

separable classes (Schölkopf et al. 1995; Xu et al. 2012). In cases where a linear hyperplane (i.e. 

model) is inappropriate for adequately separating data, a nonlinear model must be obtained by 

mapping the original data into a new high dimensional feature space through the use of kernels. 

With the use of kernel functions, the SVM operations are performed in the input space rather 

than the higher dimensional feature space, thereby reducing the computational demands of high 

dimensional problems (Gunn, 1998). 

SVMs were extended to solve regression problems for model estimation with the addition 

of an appropriate cost function called the loss function (Vapnik 1998). Several types of loss 

functions have been offered (e.g. quadratic, ε-insensitive, Huber, etc.); thus, the user must select 

the loss function that best suits the problem (Smola and Schölkopf 2004).  

The basic principles of SVM for regression, known as Support Vector Regression (SVR), 

can be illustrated for a training dataset       nn yxyxyx ,,,,,, 2211   of size n. Although more 

complex kernel functions are available and will be mentioned later, this discussion begins by 

using a linear kernel function (i.e. linear hyperplane) for simplicity. The linear kernel function, 

)(xf , can be used to solve the following regression problem, 

bxf  xw,)(  nn R,R w  b                   (1) 

where w is the coefficient and b  is the constant offset known as bias. The model given in Eq. 

(1) is trained using a subset of the training dataset that constitutes the decision boundaries or 

margin bounds as shown in Figure 3.1 (Schölkopf et al. 1995). This subset of data points is 
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referred to as the support vectors. The complexity of the model depends on the number of 

support vectors by which it is represented and is independent of the dimensionality of the input 

space (i.e. size of input data) (Smola and Schölkopf 2004; Drucker et al. 1997). Generally, 

seeking a small  in Eq. (1) decreases the percentage of data points utilized as support vectors 

thus, reducing model complexity and increasing model flatness (Smola and Schölkopf 2004).  

 

Figure 3.1. Support vectors and margin bounds. 

The regression model is determined by the convex optimization problem: 

minimize
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in which the regularization parameter λ is traditionally a pre-specified constant that determines 

the effect of the slack parameters,  ,  (i.e. the errors calculated by the loss function) on the 

objective function. When λ→0, maximizing fitting accuracy (i.e. minimizing fitting error) is the 

main objective of the optimization. Conversely, when λ→infinity, maximizing model flatness 

(i.e. minimizing complexity) becomes the main objective of the optimization. Therefore, 

applying λ>0 achieves a compromise between fitting accuracy and flatness is achieved.  
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By minimizing Eq. (2), a balance is found between complexity, 
2

2
1 w , and overall fitting 

loss, 


n

i
ii

1

*)+(
1 


. This balance ensures that the obtained model generalizes well preventing 

the model from fitting to noise, also known as overfitting. As a result, the model sensitivity to 

noise is reduced.  

The loss function used in this study is the quadratic loss function, however other loss 

functions, such as ɛ-insensitive or Huber (Gunn 1998) are also available. The quadratic loss 

function can be written as follows: 

    2
( ) ( ) ,quadL f x y f x y               (3) 

To measure the error between the observed and estimated outputs for a given input, Eq. (3) uses 

the conventional least squares error criterion as shown in Figure 3.2.  

  

Figure 3.2. Quadratic loss function for a linear SVR. 

The solution to Eq. (2) in the quadratic loss function formulation is given by, 
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By exploiting Karush-Kuhn-Tucker conditions, 
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,0*, ii   li ,,1  ,             (5) 

the optimization problem can be simplified as, 
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The regression model is given by Eq. (1) where 
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In Eqs. (4, 6 and 8), the dot product, ji xx , , can be replaced by a kernel function to map 

the linear SVR formulation to solve a nonlinear problem, a process widely known as nonlinear 

mapping (Gunn 1998). Various kernel functions, such as polynomial, spline and radial basis 

functions are available for nonlinear mapping. Due to their flexibility and consistency of fitting 

and predicting with minimal residual error in comparison to other kernels, splines are a common 

kernel function of choice in SVR modeling (Gunn 1998; Mammen 1997; Rajasekaran et al. 

2008); thus, the remainder of the chapter will focus on the spline kernel. 

3.3.2 Adaptively Weighted Support Vector Regression 

The trade-off between fitting accuracy and flatness of an SVR greatly affects the 

predictive performance of the prognostic evaluation. This principle is evident in Figure 3.3: 

models that are too simple, as shown by λ=2 on the left in Figure 3.3, may neither be able to fit 

the available data nor be able to generalize the trends well. Models that are too complex on the 
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other hand may accurately fit the available data, as shown by λ→0 on the left in Figure 3.3, but 

may not be able to generalize the trends well. Therefore, there is an optimal degree of flatness, as 

shown by λ=0.01 on the right in Figure 3.2 that finds a more suitable compromise between fitting 

error and flatness.  

       

Figure 3.3. Trade-off between flatness and goodness of fit varying from (left) more extreme λ 

values to (right) more compromising λ value. 

This optimal flatness depends on the extraneous noise present in the measurement. In 

measuring the structural responses of a system as in the case of the present study, extraneous 

noise may be incurred in the measurements due to the responses of the structure to sources other 

than those that cause long term degradation. For example, in using vibration measurements to 

monitor damage within a historic masonry structure caused by long term, gradual settlement of 

the foundation, wind and other external short term loading effects can influence the response of 

the structure, consequently adding noise to the data. Thus, the optimal λ is that which generalizes 

global trends in the presence of noise. 

The dependency of optimal flatness to noise levels is demonstrated in Figure 3.4. In 

noise-free datasets, λ→0 (i.e. giving zero weight to flatness) may provide a suitable model as 

shown in Figure 3.4 (a). As noise increases, however, a larger λ is required, meaning that more 

weight is given to flatness than fitting accuracy, to achieve a similar trend as presented in Figures 
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3.4 (b) and (c). Therefore, λ must be correctly determined for a given dataset to ensure reliable 

predictions of the future health state of the system. 

         

Figure 3.4. Magnitude of λ required to fit a given trend as noise is added. 

Cross-validation has been used for selecting the λ by utilizing hold-out experiments; 

however, this technique focuses solely on fitting accuracy (in an interpolative manner) rather 

than prediction accuracy (in an extrapolative manner) (Stone 1974; Jaakkola and Haussler 1999; 

Smola and Schölkopf 2004). Because a prognostic evaluation requires accurate extrapolative 

projections of the future health of the structure, the focus in this chapter is to improve the 

forecasting accuracy of the model rather than its closeness of fit to available data. Hence, the 

optimal λ is selected by that which predicts with the least error a predetermined number of most 

recent measurements that are not used in training the SVR model. As the global trends and noise 

levels may change over time, a constant λ may not be the best approach to applying flatness. 

Here, the proposed method adaptively selects λ and thus that is referred to as adaptively 

weighted SVR.  

The basic steps of this adaptively weighted prognostic approach can be demonstrated on 

an initial dataset of n points. In Figure 3.5, the dataset is divided into three parts: the preliminary 

training set consisting of the first m points, the hold-out set consisting of the following h points, 

and the forecasting set consisting of the next f points. During the preliminary stage, optimal λ is 

selected. For this, multiple candidate λ values (ten λ values for each multiple of 10 from 10-15 to 
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105) are tested in their ability to predict the hold-out set of h points from m to n, where n = m + h. 

The resulting L1 norm prediction error of the hold-out set is summed for each model trained by a 

different candidate λ, and, by comparison, the candidate λ producing the model with the least 

prediction error over the hold-out set is chosen as the optimal λ. During the forecasting stage, 

this optimal λ is then used to train a refined model using the total dataset that was used in the 

preliminary stage (i.e. up to n) to predict the forecasting set (i.e. from n to p). The adaptively 

weighted approach then repeats this process as additional measurements become available by 

adding these new data points to the training set and updating λ accordingly. The detailed steps of 

this process are shown in Algorithm 1.  

   

Figure 3.5. Dataset divisions for preliminary and forecasting stages of adaptively weighted SVR. 

Table 3.1. Pseudocode for adaptively weighted SVR. 

Algorithm 1. Basic structure of adaptively weighted SVR 
Begin 
Input SVR parameters 

 X = independent variable 
 Y = dependent variable 
 h = number of hold-out  points  
 f = number of forecasting points 
 P = total number of iterations 
 m = index of final point in preliminary training set 
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 n = index of final point in hold-out set 
 p = index of final point in forecasting set 

For i = 1 to P  
For λ = 10-15 to 105 

 Train a support vector regression model (see Gunn 1998) using preliminary 
training set, X1 to Xm, and forecast the hold-out set, Xm to Xn 

 Compute the L1 norm residual error of the predicted hold-out set by 
comparison to the corresponding subset of Y 

End 
 Choose optimal λ as that which gave the least prediction error of the hold-

out set 
 Train a support vector regression model using training set, X1 to Xn, and 

predict the forecasting set, Xn to Xp,  where Xp = X(n+ f) 
 Compute the residual error of the predicted forecasting set 
 Define new input parameters:  

 Xi+1
m =  Xi

n  
 Xi+1

n = Xi
p  

End 
End 

3.4. Case Study 

Coastal fortifications built as defense mechanisms in protecting important seaports and 

harbors, were once the cornerstone of national defense in the United States (McGovern and 

Smith 2006). Today, these coastal fortifications, many of which are over 150 years old, are 

considered structures of national heritage. Over their lifetime, these structures are subject to 

harsh coastal environmental and operational conditions leading to material and structural 

degradations. To successfully preserve these important historic edifices for future generations, 

timely maintenance is imperative. Prognostic evaluation can assure such timely maintenance 

campaigns.  

Fort Sumter, in Charleston, South Carolina, where the first shots of the American Civil 

War were fired in 1861 (National Park Service 1984) is one such historically important fort that 

is in need of accurate structural assessment and prognostic evaluation. There is evidence that 

differential settlement of the foundation has been occurring at Fort Sumter leading to extensive 
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cracks throughout the masonry casemates. Thus, this section demonstrates the weighted SVR 

prognostic technique as applied to one of the casemates of Fort Sumter considering gradual 

settlement of foundations. 

3.4.1 Case Study Structure: Fort Sumter National Monument 

The construction of the pentagonal-shaped clay masonry fort began in 1829 on a man-

made island. In the years of the Civil War, Fort Sumter witnessed several battles that severely 

damaged the structure (National Park Service 1984). After several rounds of demolition and 

reconstruction, Fort Sumter was declared a national monument in 1948. The fort has since been 

maintained by the National Park Service and is currently accessible to visitors (see Figure 3.6).   

 

Figure 3.6. Current aerial view of Fort Sumter (Courtesy: National Park Service). 

3.4.2 Finite Element Model Development  

The FE model of the single casemate used in this study as shown in Figure 3.7 is 

developed in Ansys 13.0 by incorporating data from on-site inspections and evaluations 

discussed in detail in (Atamturktur et al. 2013). Laboratory tests are conducted on core samples 

of the masonry and a masonry prism specimen from fallen debris in order to obtain the material 

properties. 3D laser scanning is performed to obtain the precise as-is geometry of the casemate 

with which the FE model geometry is constructed while preserving key geometrical features 

such as any permanent deformation, material deterioration, tilting of the walls. The FE model is 

developed using SOLID65 elements that are specialized for modeling concrete-like brittle 
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materials (Özen 2006; Mahini et al. 2007). The SOLID65 element uses a smeared crack analogy 

to account for deformations due to cracking and crushing of the material. The linear material 

properties of the model are calibrated to experimentally obtained modal parameters (i.e. first two 

natural frequencies and mode shapes).  

 

Figure 3.7. FE model of Fort Sumter casemate used in case study (refer to  

Atamturktur et al. 2013).  

Because the barrel vaulted casemates are built adjacent to but detached from the scarp 

wall, the scarp wall and the casemate are two independent structural entities. Therefore, contact 

elements that allow sliding and separation (but do not allow penetration) of two adjacent 

components are used to model this interface. A dynamic hammer impact test was used to 

calibrate the friction coefficient accounting for the friction and cohesion (if any) at the interface 

to represent this possible sliding action in the FE model. To take into consideration the lateral 

interaction with the adjacent casemates, adjacent casemates are represented using substructuring 

techniques. To keep the size of the model to a manageable level, the foundations of the casemate 

are idealized as a series of linear springs having finite stiffness. Details of the model 

development process are provided in Atamturktur et al. (2013). 

3.4.3 Simulations of Support Settlement 
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The FE model used to simulate support settlement is shown in Figure 3.8, where the 

casemate of interest is the center casemate with the adjacent casemates modeled as substructures. 

The ground below the casemates can be visualized as a rectangular plane as shown on the left of 

Figure 3.8. By tilting this rectangular plane in the direction perpendicular to the external wall as 

shown in Figure 3.8 (right), the settlement configuration is simulated. This configuration 

representing settlement of the external wall is used to obtain the structural response data for 

application of the proposed prognostic technique. 

  

Figure 3.8. Initial model configuration on level surface (left) and settlement configuration (right). 

In the simulations, the ground plane of the casemate is gradually settled with a maximum 

displacement (Δ) under the scarp wall of from 2.5 mm to 100 mm at increments of 2.5 mm. The 

first principal strain at the two control point locations, POINT 1 and Point 2, shown in Figure 3.9 

are monitored during these settlement simulations. As shown in Figure 3.8, Point 1 is located at 

the base of the pier, and Point 2 is located at the springing of the arch. The resulting first 

principal strains at the two control points obtained from the simulated settlement are plotted in 

Figure 3.10 with randomly generated non-stationary noise added.  

Δ

Rectangular 
plane 
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Figure 3.9. Locations Point 1 and Point 2 of monitored strains during settlement (circled). 

   

Figure 3.10. Settlement induced strains obtained from FE model of Point 1 (left) and Point 2 

(right) with added noise. 

3.4.4 Prognostic Evaluation using Weighted SVR  

The algorithm presented in the methodology section is deployed on the simulated dataset 

shown in the previous section. 15 data points simulating the strain response of the casemate 

under settlement up to 40 mm are assumed to be available for the prognostic evaluation. To 

determine the initial λ value, the first ten of these data points are used in the preliminary training 

set (up to 27.5 mm settlement) and the next five data points are used as the hold-out set (from 

27.5 mm to 40 mm settlement) (refer back to Figure 3.5). Multiple candidate λ values between 

10-15 and 105 are tested to find the optimal λ that yields the minimal error in predicting the hold-

out set. With the identified optimal λ, a refined SVR model is trained and is executed to forecast 
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the next five data points (from 40 mm to 52.5 mm settlement). This process is repeated as new 

measurement data become available, and the optimal λ is updated during each iteration. In this 

case study, a total of five iterations are completed to reach 100 mm settlement, thus the optimal λ 

is updated four times after it is initially determined in the first trial. The predicted response, 

prediction error, and adaptively refined optimal λ obtained as a result of this analysis are 

displayed in Figure 3.11 for Point 1 and Figure 3.12 for Point 2 (note that results shown after the 

vertical dashed line in Figures 3.11 and 3.12 (a) and (b) are the compiled results of the five 

forecasting iterations). For comparison, the predicted response and prediction error of an SVR 

model trained using a constant λ of λ→0, which gives all weight to fitting error and none to 

flatness, are also included in the figures. 

       

Figure 3.11. Comparison of adaptively weighted SVR to non-weighted SVR using Point 1 data 

with increasing noise: (a) predicted response, (b) prediction error, and (c) λ value used for 

prediction model. 
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Figure 3.12. Comparison of adaptively weighted SVR to non-weighted SVR using Point 2 data 

with increasing noise: (a) predicted response, (b) prediction error, and (c) λ value used for 

prediction model. 

As evidenced in Figures 3.11 and 3.12, the adaptively weighted SVR predicts the 

settlement induced strains with less than half as much error as the non-weighted approach (see 

Table 3.2). It must be noted that the noise added to the simulated data is non-stationary in nature. 

Therefore, the distinct advantage of the adaptive approach is its ability to recover the optimal λ 

as noise fluctuations occur over time, as is the case in practical in situ monitoring applications. 

Table 3.2. Total prediction error for adaptively weighted SVR and non-weighted SVR. 

SVR Approach Point 1  Point 2 

Adaptively weighted 0.0719 0.0057 

Non-weighted 0.1898 0.0178 

3.5. Conclusion 

Although SVR is known for its superior prognostic abilities, the performance of this 

machine learning technique is reliant on the selection of an appropriate regularization parameter, 

λ, determining the tradeoff between fitting accuracy and model complexity (i.e. flatness). The 

optimal tradeoff is greatly affected by the presence of time-variant extraneous noise within 

measurements, which is common during in situ monitoring applications. Therefore, an ideal 

process for selecting optimal λ is one in which the model sensitivity to noise is decreased.  
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Within this chapter, an adaptive weighting approach for SVR is developed, which first 

determines the optimal λ based on forecasting accuracy, and then uses this optimal λ to develop a 

refined model for future predictions. As additional data becomes available in time, the optimal λ 

is updated allowing the new model to be adjusted for fluctuations in noise intensity. Thus, the 

most suitable model complexity for a given dataset is selected for each set of predictions. In 

testing the performance of this approach on the simulated settlement response of a historic 

masonry coastal fortification, the adaptively weighted SVR shows greatly increased forecasting 

accuracy over the non-weighted approach.  

The developed adaptively weighted SVR has potential to be incorporated in a structural 

health monitoring process to ultimately assist in preserving the cultural heritage by predicting its 

future structural integrity. However, future direction in research should focus on determination of 

appropriate damage sensitive features and corresponding monitoring techniques for prognosis of 

historic masonry structures. Furthermore, a failure threshold indicating the structure’s end of life 

must also be defined. Such a threshold can only be defined by developing a link between 

nondestructive measurements and the remaining load carrying capacity of the masonry 

monument as suggested in Atamturktur et al. (2012), which is the primary attribute of concern in 

prognostic evaluation.  
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CHAPTER FOUR 
AN EMPIRICAL ASSESSMENT OF LOAD CARRYING CAPACITY OF A SCALED 

MASONRY DOME: SIMULATIONS VALIDATED WITH NON-DESTRUCTIVE AND 
DESTRUCTIVE MEASUREMENT 

4.1     Introduction 

Masonry, one of the oldest construction materials, exhibits high load-carrying capacity in 

compression but much lower capacity in tension, to the point that structural analysis of masonry 

often assumes a theoretical value of zero tensile capacity (Heyman, 1995). Large spans in 

structural masonry are possible using domes that allow forces to be transferred in compression. 

These masonry domes, found in many historic buildings across the world, typically stand in a 

state of structural distress appearing in the form of cracking. For example, the great dome of 

Florence stands with 493 symmetrically distributed cracks of various widths (Suro, 1987). The 

growth of these cracks due to natural aging or disastrous events can threaten the safety of these 

masonry domes regardless of the length of time they may have been safely standing. 

Furthermore, the sudden collapse of many historic masonry monuments over the last several 

decades has demonstrated the vulnerability of masonry systems to failure with no particular 

warning or structural indication of imminent failure; see for example, the Civic Tower of Pavia, 

Italy (Binda et al., 1992); the bell tower of St. Magdalena in Goch, Germany (Garntert 

Engineering Studio, 1993); Cathedral of Noto, Italy (Binda et al., 1999); the bell tower of the St. 

Willibrordus Church in Meldert, Belgium (Ignoul and Van Gemert, 2006); the Maagdentoren in 

Zichem, Belgium (Ignoul and Van Gemert, 2007); the Church of Kerksken, Belgium (Verstrynge 

et al., 2011). 

Recently, vibration-based structural health monitoring (SHM) techniques have been 

increasingly used to help maintain safe and economic operation of aging masonry structures. The 
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purpose of vibration-based SHM is to exploit the sensitivity of the vibration signature of a 

system to the structural damage and has been successfully implemented to detect the onset of 

damage in published literature (Atamturktur et al., 2011). Detecting the onset of damage, while 

helpful for efficient and effective maintenance, is only part of the solution for safe and economic 

operation of heritage structures. What is ultimately needed is an assessment of the structural 

integrity of the damaged system; therefore estimating the reduction in load carrying capacity 

after the onset and progression of damage must be one of the goals of SHM. However, until 

recently, little effort has been made to decipher the indirect relationship between the changes in 

the vibration characteristics and the reduction in load carrying capacity due to damage. 

A masonry domical structures under excessive loads or support movements develop 

meridional and parallel cracks, which cause a reduction in the stiffness of the structure. In turn, 

this reduction in stiffness can be detected experimentally through the reductions in the measured 

natural frequencies of the dome. Experimental modal analysis (EMA) and the companion 

operational modal analysis (OMA) techniques are nondestructive testing and evaluation 

methodologies for measuring the natural frequencies of a structure. These techniques can be 

conveniently employed to monitor the changes in the vibratory characteristics of a structure as 

damage progresses in a non-invasive manner. Aside from degrading the stiffness, development 

of meridional and parallel cracks due to distress also reduces the strength of the dome. However, 

the reduction in strength results in the reduction of the load-carrying capacity, which is a 

challenging property to quantify without destructive testing (Brown et al., 1995). As it is hard to 

imagine conducting destructive experiments on an existing structure, the central query then 

becomes one of estimating the reduction in the load carrying capacity due to damage (which we 
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cannot directly measure) by exploiting the changes in the natural frequencies (which we can 

directly measure with EMA and OMA).  

The fundamental contribution of this manuscript is to exploit the sensitivity of the 

vibration characteristics to the structural integrity of the masonry dome and formulate an 

empirical relationship between the changes in the natural frequencies and reduction in load 

carrying capacity due to damage. Such empirical relationship is an intrinsic characteristic of 

particular type, material, and geometry of the structure and thus, must be treated in a case-

specific manner. The proposed approach however presents itself to be useful for structures with 

many repetitive components, see for instance the structures studied in Atamturktur and Sevim 

(2011) and Atamturktur and Boothby (2010). The proposed empirical relationship, once 

successfully formulated for a specific structure type, can be used in practical applications to 

assess the remaining load carrying capacity of existing structures.  

In the present study, this empirical relationship is developed based on a combined 

experimental and numerical study completed on a scaled masonry dome constructed in the 

laboratory with autoclaved aerated concrete (AAC) tiles and fast-setting gypsum mortar (plaster 

of Paris). The numerical model of the dome is built in ANSYS v. 13, a finite element (FE) 

analysis program. The uncertain linear elastic material properties of the model, such as the 

Young’s modulus, are calibrated by comparing the model predictions against experimentally 

obtained natural frequencies which are paired according to mode shape correlations. Next, the 

nonlinear constitutive behavior is added to the model and the uncertain nonlinear properties, such 

as the tensile stress capacity, are calibrated by comparing the predicted load-displacement plots 

to those experimentally measured in the laboratory. Once a FE model that can accurately 

represent both linear (natural frequencies) and nonlinear (load carrying capacity) behavior of the 
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domes is obtained, the model is then used to simulate the effects of crack development on both 

the stiffness (and thus, natural frequency) and the strength (and thus, load carrying capacity). The 

gradual reduction in natural frequencies caused by cracks with increasing lengths up to 20 in. is 

documented and correlated with the corresponding reduction in the load carrying capacity of the 

dome. A mathematical function (i.e., an emulator or a surrogate model) is trained to represent 

this indirect relationship between natural frequencies and load carrying capacity. The established 

empirical relationship is conservative as an upper bound to the reduction in load carrying 

capacity is defined and is (to an extent) generally applicable since domes with various span-to-

height ratios are considered.  

4.2 Scaled dome model 

The structure studied herein is a scaled masonry dome built in the laboratory with the 

traditional methods of tile vault construction, except for a material change to AAC tiles. These 

tiles are lightweight, fire resistant and composed of cement, lime, water, sand, and aluminum 

powder (Costa et al., 2011). The geometric properties of the tested dome are listed in Table 4.1 

and the configuration is shown in Fig. 4.1.  

Table 4.1 Geometric properties of the dome. 

Properties Values 

Radius of curvature 1.52 m (60 in) 

Span at base 2.13 m (84 in)

Rise above springing 0.44 m (17.4 in)

Angle of embrace 45°

Thickness 0.03 m (1.25 in)
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Fig. 4.1. The scaled dome constructed with AAC tile and fast-setting gypsum cement. 

4.3 Finite element model development 

Although the FE analysis is an efficient method to simulate the behavior of civil 

structures, developing an accurate numerical model is a challenging task due to the large number 

of assumptions that must be established and the parameters that must be defined. Masonry 

construction is a non-homogenous and non-isotropic composite, which in the dome studied here 

is composed of individual tile units and mortar joints. The complex and irregular nature of 

masonry construction is responsible for the difficulties in accurately predicting the structural 

behavior of such systems. Of course, the problem is further exacerbated by the degrading effects 

of aging, such as localized or diffused cracks and by poorly documented history of structural 

intervention and rehabilitation schemes. Although detailed micro-models that incorporate 

individual tile units and mortar joints and localized damage are capable of addressing some of 

the complexities, their application is primarily restricted to small-scale structures with simple 

geometric forms (Lourenço, 2002).  

In this study, the macro-modeling approach is implemented using ANSYS v. 12, in which 

the tile units and mortar joints are smeared together as one continuum with homogenized 
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properties representative of the combined behavior of the two components in the masonry 

assembly (Lourenço, 2002). The first step of macro-modeling is to reproduce the geometry of the 

structure as precisely as possible. This is accomplished using the available geometric 

documentation from the original design of the dome (see Fig. 4.2). Even though in Lau (2006) 

construction imperfections have been reported to result in ± 1.7% deviations between the 

designed and built dome, in the FE model, the dome is idealized to have perfectly symmetric 

geometry. Moreover, the dome is idealized to have symmetric boundary conditions where the 

boundaries of the dome along the bottom edge are kept restrained from translating in all three 

directions. 

 

Fig. 4.2. FE model of the dome. 

In FE analysis, obtaining a proper spatial discretization of the solid model, in which the 

geometric model is systematically discretized into finite elements, is a critical step. Indeed, the 

selected mesh size can drastically affect the accuracy of the numerical solution. Theoretically, 

with an infinite number of elements, a complete computational reproduction of the structure can 

be achieved; it is of course impractical to use such excessively large number of elements. 

Therefore, it becomes important to determine both the optimal element type and the optimal 

mesh size that result in converged solutions for the output of interest, which in this study is the 

modal and static responses of the tile dome.  
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The solution accuracy is monitored for the natural frequencies, static load-carrying 

capacity and stiffness as the number of finite elements in the model is gradually increased from 

14520 to 49284 (i.e. the mesh size is gradually reduced and the number of elements gradually 

increased). Natural frequencies of the six modes of the dome, which are later presented in 

Section 4.4.2 during test-analysis correlation, are monitored. The asymptotic convergence of the 

predicted natural frequencies as the mesh is refined is shown in Fig. 4.3.  

 

Fig. 4.3. Asymptotic convergence of the six natural frequencies as mesh is refined. 

 

Similarly, for the nonlinear analysis, a vertical 5338 N (1200 lb) load is gradually applied within a 

radius of 30.48 cm (12 in) around the crown of the dome. This configuration generates force-

displacement diagrams and mimics the actual destructive tests as explained later in Section 4.5.1. The 

mesh is refined to ensure that the predicted ultimate load carrying capacity and stiffness have converged. 

Similar to mesh convergence depicted in Fig. 4.3, beyond 30000 elements, further refinement of the mesh 

is observed to yield only minimal improvement in predictive capability. As a result, a mesh with a total 

number of 32400 elements is implemented to obtain the desired numerical accuracy for both the linear 

and nonlinear solutions. 
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To properly represent the constitutive behavior of the domical structure correctly, a suitable 

element type must be defined in the FE model. AAC materials share a similar stress-strain law 

with that of normal strength concrete (Costa et al., 2011). Developed specifically for concrete, 

SOLID65 is a three-dimensional, 8-node solid isotropic element readily available in ANSYS v. 

12 to model the nonlinearity of brittle materials (ANSYS, 2010). The nonlinear behavior of 

SOLID65 element is based upon the Willam-Warnke yield criterion, a constitutive model for the 

failure and tri-axial behavior of concrete materials (William and Wamke, 1975) as seen in Fig. 

4.4. Although Willam-Warnke yield criterion is developed for concrete material, it is also 

demonstrated to be suitable for masonry (Page). There has been several successful applications 

of the Willam-Warnke yield criterion to masonry structures; see for instance, Andreas et al. who 

evaluated the lateral load carrying capacity of unreinforced masonry structures (Andreas et al., 

2002); Truong et al. who compared the different modeling strategies (micro vs. macro) for 

masonry underground movements (Linh and Debra, 2008); Aiello et al. who evaluated the bond 

behavior between masonry components (Aiello et al.); and Brencich et al. who adopted the 

criterion in the safety analysis of the masonry dome of Basilica of S. Maria of Carignano 

(Brenchich et al., 2001). 

The SOLID65 element is capable of accounting for cracking in tension with a smeared crack 

analogy and crushing in compression with a plasticity algorithm. The stress-strain relationship of 

SOLID65 has two phases: linear elastic behavior and nonlinear behavior after either of the 

specified tensile or compressive strengths is exceeded. Cracking or crushing occurs when any of 

the three principal stresses exceed the specified tensile or compressive strength of the concrete at 

any of the eight integration points. After the occurrence of cracking or crushing, a plane of 



57 
 

57 
 

weakness is introduced in the requisite principle stress direction, thus decreasing the global 

stiffness and simulating the formation of a crack (Fanning, 2001).  

 

Fig. 4.4. Simplified Stress-Strain curve for concrete in ANSYS. 

 

The AAC brick used in this study is mid-grade TruStone AAC TS 3, which has a 

compressive strength bf   of 4.14 MPa (600 psi) (TruStone America, 2005). The modulus of 

elasticity of AAC brick is calculated using Eq. (1) according to ACI-530 Section 1.8.2.3.1 

(MSJC, 2008):   

0.66500( )b bE f                                                                                                             (1) 

where bf  is the specified compressive strength (in psi) of AAC masonry. 

The modulus of elasticity of the AAC tile is calculated using Eq. (1) as 2.08 GPa (3.02 × 

105 psi). There are other recommended prediction equations for the modulus of elasticity of 

AAC, which are provided in Narayanan and Ramamurthy (2000). These alternative equations all 

yield values close to or a range containing the value calculated using Eq. 1. In the absence of 

experimental data, the elastic modulus of the wet gypsum mortar is initially assumed to be 25% 

that of the tile yielding 0.52 GPa (7.55 × 104 psi). The Uniform Building Code (UBC-1991) 

recommends Eq. (2) to calculate the modulus of elasticity of the homogenized material of brick 
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and mortar units (ICC, 1991). The equation considers the thickness and elastic modulus of both 

the AAC tile and the mortar to provide an approximate value of the homogenized modulus of 

elasticity, Em which is given by 

1

1
t

m b
t m

E E


 





           (2)                        

in which bE is the modulus of elasticity of brick (2.08 GPa (3.02 × 105 psi)); m is the modulus 

ratio given by 0.25j bE E  where jE is the modulus of elasticity of mortar joints (0.52 GPa 

(7.55 × 104 psi)); and t is thickness ratio given by 0.125j bt t  where jt is the thickness of 

mortar joints, (0.01 m (0.5 in)) and bt is the thickness of brick along the curvature (0.10 m (4 

in)). Thus, with all required values known, the initial value of the elastic modulus for the 

homogenized tile and mortar assembly is calculated from Eq. (2) as 1.56 GPa ( 52.27 10 psi).  

The AAC tile used in this study has an approximate dry density of 581.28 kg/m3 (0.02 

lb/in3) (TruStone America, 2005). AAC, being quite porous, has a moisture content of 

approximately 15-25% (Narayanan and Ramamurthy, 2000), which of course leads to an 

increase in the density. For new construction, this value can be as high as 45% (RILEM 

Technical Committee, 1993). In this study, the experiments were conducted within 48 hours after 

the dome was constructed, therefore an approximate of 35% moisture content is adopted while 

calculating the density. The wet density of AAC tile is then calculated as 775.04 kg/m3 (0.03 

lb/in3). According to the product manual, the wet density of the gypsum cement is 1762 kg/m3 

(0.06 lb/in3) (USG [internet]). Therefore, assuming a composition of 60% bricks and 40% 

mortar, a homogenized density is calculated to be 1190 kg/m3 (0.04 lb/in3).   

Lau (2006) reports the uniaxial tensile strength test results for the brick-mortar bond 

conducted for the scaled tile dome discussed herein. It is reported that the bond has a tensile 
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strength within a range of 0.07 MPa (10 psi) to 0.27 MPa (39 psi), and with an average value of 

0.16 MPa (23 psi). Accordingly, in this study, the initial value for the tensile strength of the FE 

model is defined as 0.16 MPa (23 psi).  

Table 4.2 FE model input parameters before and after calibration 

(*fine-tuned parameter values) 

Parameter Before After 

Young’s Modulus*, Em 1.56 GPa (227000 psi) 1.55 GPa (225000 psi) 

Poisson’s ratio,  0.25 0.25 

Open shear transfer coefficient, t  0.2 0.2 

Closed shear transfer coefficient, c  0.6 0.6 

Ultimate uniaxial compressive strength, '
cf  4.14 MPa (600 psi) 4.14 MPa (600 psi) 

Ultimate uniaxial tensile strength*, tf  0.16 MPa (23 psi) 0.14Pa (20 psi) 

4.4  Correlation of the FE model with nondestructive tests: linear properties  

The natural frequencies of the structure which must be measured to establish the 

proposed empirical relationship can be obtained using either experimental modal analysis (EMA) 

or operational modal analysis (OMA) techniques. In published literature, both EMA and OMA 

have been successfully applied to masonry structures. For EMA, see for instance Armstrong et 

al. (1995) who studied a masonry arch vibrations to detect spandrel wall separation; Brown et al. 

(1995) who tested masonry arch bridge prototypes to determine the development of cracks and 

hinges under overloading; and Atamturktur and Boothby (2010) who exploited the vibrations of 

the cathedral vaults to validate the numerical models. For OMA, see for instance Gentile and 

Saisi (2007), who studied a masonry tower to determine the regions with diffused cracks; Ramos 
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et al. (2010), who evaluated a historic masonry cathedral and Bayraktar et al. (2011), who 

studied the vibration of a minaret to update the numerical the finite element model. Also see 

Atamturktur et al. (2011) for a comparison of practical and technical differences of EMA and 

OMA techniques as applied to large-scale masonry monuments.  

4.4.1  Experimental campaign 

EMA is adapted for the vibration evaluation of the scaled dome by collecting the 

acceleration response of the masonry tile dome due to a short-duration hammer impact. The 

objective of this dynamic test is to provide physical evidence for the calibration of the linear 

parameters entered into the FE model. For the impulse excitation, a 1.01 kg (2.42 lb) model 

086D20 sledge-hammer manufactured by PCB, Inc. is used. This hammer is selected due to its 

capability to excite the frequency range of interest, which is 0-150Hz (to identify the first 20 

modes of the dome). In an effort to maximize the number of modes that are successfully 

identified, seven distinct excitation locations are selected as shown in Fig. 4.5 (Left). PCB Model 

393A03 uniaxial seismic accelerometers, with a frequency range of 0.3-4000 Hz and a sensitivity 

of 10 volts/g, are used during the test. The accelerometers are arranged at 20 locations over outer 

surface of the dome as shown in Fig. 5 (Right). 

 

Fig. 4.5. (Left) Excitation points, (Right) Measurement points. 
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The data is processed and recorded by SigLab data acquisition system, manufactured by 

Spectral Dynamics, Inc. The time domain response measurements are obtained with a record 

length and sampling frequency of 2048 samples and 1000Hz, respectively. The responses are 

recorded within 4 seconds, which fully capture the response of the dome in a single time frame, 

thus preventing the leakage of higher-frequency energies over the lower frequencies. The short 

duration impact of the hammer excites the tile dome to vibrate at a wide range of its inherent 

natural frequencies until the response dies out exponentially. A typical time domain 

measurement of hammer impulse and acceleration response can be seen in Fig. 4.6. As seen in 

this figure, the measurements are collected over 4 seconds to allow the decay of the dome’s 

vibratory response, which allows us to eliminate the need for window functions. The 

measurement duration is determined by the desired Frequency bandwidth and resolution. All 

variables of signal processing equipment are given in Table 3. 

 

Fig.4.6. Typical response history measurements: (Left) hammer impact, (Right) vibration response. 

Table 4.3 Variables of the digital signal-processing. 

Parameter description Parameter value 

Data acquisition time 4.0 s 
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Frequency resolution 0.25 Hz

Frequency bandwidth 200 Hz

Frequency range of interest 60-200 Hz

Sampling frequency resolution 1000 Hz

Total number of samples 2048

Number of frequency lines 800

Number of averages 5

Window function Boxcar (no window) 

 

The frequency response functions (FRFs), which are the ratio of the output response of a 

structure to an applied force in the frequency domain are calculated. Assuming an accurate 

measurement of the excitation force, SigLab accounts for uncertainties and noise in the response 

signals, and thus uses an H1 FRF estimator (Rocklin et al., 1985). As recommended by 

Atamturktur et al., FRFs obtained for five repeated tests are averaged to reduce the degrading 

effects of ambient vibrations (Atamturktur et al., 2009). Observing the coherence functions 

ensure the quality of the measurements as did reciprocity and linearity checks.  

Reciprocity of the dome measurements is checked by comparing the response at Point 10 

due to an excitation at Point 6, against the response at Point 6 due to an excitation at Point 10 

(see Fig. 4.7). In reciprocity checks, the discrepancies may derive from many sources (e.g. test-

to-test variability caused by the hammer excitation, accelerometer setups, ambient vibration from 

the environment, and testing equipment noise) (Atamturktur et al., 2009). In Fig. 4.7, over the 

frequency range of 0-200 Hz, the area between the two FRF curves is approximately 23% of the 

average area of the two FRFs. Despite this deviation, the peaks are closely adjacent with an 

average deviation of 3.9% for the six modes of interest. This limited variability indicates that the 
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modal parameter identification is minimally affected; thus the reciprocity between the two FRFs, 

and thus the linear behavior of the structure, is deemed acceptable. 

 

Fig. 4.7. Reciprocity check. 

In theory, as a linear system should have identical FRFs at different magnitudes of 

hammer excitation, the linear response of the dome can also be checked by comparing the FRFs 

obtained at different excitation levels. Fig. 4.8 shows the linearity check through a comparison of 

the responses and the coherence functions of the driving point measurements1 with two levels of 

excitations. Over the frequency range of 0-200 Hz, the area between the two FRF curves 

obtained with 27.22 kg (60 lb) and 45.36 kg (100 lb) excitations is approximately 13.00% of the 

average area of the two FRFs. The peaks in the FRFs are less influenced by the change in the 

excitation force with an average deviation of 2% in the natural frequencies. 

 

                                                 
1 Driving point measurement indicates where one excites and measures at the same location. 
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Fig. 4.8. Linearity check (Top) the driving point FRF for the crown of the dome, (Bottom) the 

corresponding coherence function. 

Using PULSE Reflex version 15.0.0, manufactured by B&K Company, system identification of 

the natural frequencies and mode shapes is conducted, the result of which are discussed in the 

next section. 

4.4.2  Test-analysis correlation 

Since the FE model is used to predict the changes in the natural frequencies as a result of 

development and propagation of cracks, it is critical to ensure that it reproduces the natural 

frequencies of the actual tile dome accurately. However, while comparing measured and 

calculated natural frequencies, it is most important to ensure that the modes are paired in a 

correct sequence such that natural frequencies are correctly compared against each other, i.e., 

measured first bending mode is compared against the calculated first bending mode. Therefore, 

we first pair the measured and calculated natural frequencies according to their mode shape 

vectors. We verify each pair by both visually correlating the mode shapes and checking the 

Modal Assurance Criterion (MAC) values (see Table 4.4).  
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Table 4.4 presents this test-analysis correlation for the six modes of the dome, where the 

maximum deviation between the natural frequencies is approximately 8%. Table 4.4 also 

presents the visual comparison of mode shapes along with the MAC values between the 

measured and calculated modes with an average of 0.73. For the first four modes, the MAC 

values are above 0.7 indicating a sufficiently well correlated modes. The fifth and sixth modes 

however yield lower MAC correlations. Note that Brownjohn and Xia state that MAC statistics 

are imperfect indicators of modal correlation inferior to visual comparison (Brownjohn and Xia, 

2000). Satisfactorily high MAC values for the first four modes and the clear visual agreement of 

the last two modes in combination enable us to verify the mode shape sequence.  

 

Table 4.4 Comparison of the predicted and measured natural frequencies and corresponding mode 

shapes.  

Frequency 

Disagreement 

MAC 

Correlation 

Analytical 

Mode Shape 

Experimental  

Mode Shape 

2.90% 0.81 74.5 Hz 72.4 Hz 

MODE 1 

 

 
 

3.07% 0.76 80.6 Hz 78.2 Hz 

MODE 2 
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6.26% 0.78 80.8 Hz 86.2 Hz 

MODE 3 

 

 
 

4.08% 0.87 86.9Hz 90.6 Hz 

MODE 4 

 

 

 

8.01% 0.69 88.4 Hz 96.1 Hz 

MODE 5 

 

 
 

1.93% 0.48 96.6 Hz 98.5 Hz 

MODE 6 

 

 

 

 

While obtaining the agreement presented in Table 4.4, one of the linear material property values 

listed in Table 4.2, the homogenized Young’s modulus, Em, is calibrated from 1.56 GPa (227000 

psi) to1.55 GPa (225000 psi). 
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4.5 Test analysis correlation with destructive tests: nonlinear properties of the FE 

model 

In published literature, researchers have frequently resorted to destructive experiments to 

determine the load carrying capacity of masonry structures. Balaji and Sarangapani (2007) 

conducted a load-to-failure test on a scaled dome model built with brick and mud mortar. 

Deflections of the dome were measured as a function of the uniformly distributed load applied 

evenly on the dome and simultaneously, propagation of meridional cracks was recorded. In this 

study, a gradual reduction of stiffness was observed as the cracks develop. There has been a 

greater interest in conducting destructive experiments on masonry arches compared to domes, 

owing the need to assess the load carrying capacity of masonry arch bridges. Load-to-failure 

tests on arch bridges were completed in numerous studies (Page (1995), Boothby et al. (1995)) 

for field testing on in-service masonry arch bridges, (Gilbert and Melbourne, 1994) for full-scale 

destructive testing of an arch-bridge (Begimgil (1995), Søyland and Rosson (1995), Royles and 

Hendry (1991))  for destructive testing of scaled masonry arch bridge models. 

Perhaps the most relevant earlier published work in the literature is Brown et al. (1995), 

through which a masonry arch bridge was incrementally loaded to failure in the laboratory with a 

vertical load at its quarter span. During this experiment, authors have conducted experimental 

modal analysis to observe the changes in the natural frequencies of the arch and observed a 10% 

reduction in the first natural frequency between the onset of damage and the formation of first 

hinge. As the damage in the arch bridge was further increased, progressive reduction in natural 

frequencies was observed. A novel “serviceability threshold criterion” to relate the load carrying 

capacity of the damaged arch bridge to its natural frequency was also proposed (Brown et al., 

1995). 
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4.5.1  Experimental campaign 

A load-to-failure test is conducted on the masonry tile dome studied herein to evaluate 

both the load-displacement behavior and failure pattern under a distributed load applied at the 

crown (see the test setup in Fig. 4.9). A vertical 5.338 N (1200 lb) load is gradually applied 

within a radius of 30.48 cm (12 in) around the crown of the dome. The applied load and the 

deflection of the dome are measured until the dome reached collapse.  

 

Fig. 4.9. Experimental setup for the destructive testing (Ramage (2006), with permission). 

4.5.2  Test-analysis correlation 

During the load-to-failure evaluation, the structure enters into the nonlinear range and 

therefore, the available destructive test data can be used to calibrate the nonlinear material 

properties entered into the FE model. Consistent with the experimental campaign, a 5.338 N 

(1200 lbf) vertical force is applied over a circular region with a 30.48 cm (12 in) radius at the top 

of the FE model.  The comparison of the calculations with measurements given in Fig. 10 yields 

a good agreement, where the difference between the average stiffness is approximately 2.9% 

within the elastic range. The stiffness is calculated from measurements, as the average of 201 

experimental data points and from calculations, according to the ultimate load carrying capacity 

and the corresponding displacement as shown in Fig. 4.10. The mean value of the maximum load 
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during the experiment is approximately as 3.98 kN (895.66 lbf), while the FE model has a load-

carrying capacity of 3.96 kN (889.32 lbf), which yields a difference of 0.71%. To obtain such 

agreement as presented in Fig. 10, the ultimate uniaxial tensile strength, fr, is fine-tuned and is 

reduced from 0.16 MPa to 0.14 MPa.  

 

Fig. 4.10. Test and simulation correlation. 

4.6 Simulation of damage via experimentally informed FE models 

4.6.1  Crack patterns and modeling 

A common feature of unreinforced masonry domes is that under vertical loads the lower 

portion of the dome tends to spread outward. The resulting hoop tension then causes longitudinal 

cracks at the base, ultimately resulting in the separation of the dome into a series of arches with 

the top portion acting as a common key stone (see Fig. 4.11 top) (Heyman (1995), Fraternali 

(2010)). Such behavior, which has been observed in many historic domes, was the primary 

motivation for the invention of the tension ring placed at the base of domes, see for instance the 

dome of Hagia Sophia where continuous iron clamps were used between bricks to resist the hoop 

forces (Mainstone, 2001). For domes with tension rings, although a similar crack pattern may be 
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observed, the cracks do not reach the base of the dome since the tension ring prevents opening of 

the cracks (Fig. 4.11 bottom).  

 

Fig. 4.11. (Top) Spherical masonry domes without hoop tension carrying mechanism: aerial and plan 

view of cracks (reproduced with permission, (Heyman, 1995)); (Bottom) Spherical masonry domes with a 

tension ring: aerial and plan view of cracks. 

Although a dome may remain stable after the occurrence of cracks, owing to the inherent 

ductility of masonry construction (Abrams, 1992), the propagation of such cracks clearly 

degrades the strength of the dome. These cracks can threaten the structural integrity if they 

become too extensive, as with the unforeseen collapse of the domes of the Noto Cathedral in 

(Tringali et al., 2001). It is precisely this degradation in strength after the onset of damage (in 

this particular study, after the development of cracks) that must be determined for appropriate 

management and maintenance of masonry structures.  

4.6.2  FE analysis of the crack distribution 

To simulate a scenario in which cracks develop in the masonry tile dome due to 

overloading, the load applied at the crown of the dome is gradually increased. As the load 
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increases, the middle part of the dome bulges outward, thus resulting in hoop tension around the 

circumference of the dome. Fig. 4.12 shows the distribution of the first principal stress of the 

dome under the static load. The shaded area indicates regions where tensile stress levels exceed 

the tensile strength of the material, which initiates the crack formation. This simulation supplies 

a series of symmetrically distributed crack locations that are further discussed in Section 4.6.3. 

 

Fig. 4.12. 1st principal stress distribution above the tensile stress capacity (>0.14 MPa (20 psi)). 

4.6.3  FE modeling of the damaged dome 

For modeling cracks in FE analysis, two distinct methods are adopted: discrete crack 

models and smeared crack models. A smeared crack model is a suitable representation when an 

abundance of minor cracks are distributed across the structure, while discrete crack modeling is 

suitable to represent the actual discontinuity in the deformations if the problem only involves a 

few dominant cracks where the cracks are isolated and significant in size (Ngo and Scordelis, 

1967).  

Discrete crack modeling  changes either the geometry or the mesh topology of the model 

to create a gap (or void) in the model that represents the crack (Fig. 4.13). Herein, initial four 

major cracks that represent the damage state of the dome are modeled by introducing a mesh 

discontinuity. However, during the nonlinear, load-to-failure analysis, as the applied loads are 
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gradually increased, minor, distributed cracks emerge, which are represented by the inherent 

smeared cracking capability of the SOLID65 elements readily available in ANSYS v.12. 

 

Fig. 4.13. Cracks introduced in the FE model. 

When the mesh topology is being modified to introduce the meridional cracks into the FE model, 

it is important to automate the process in such a way that the mesh is kept identical for each 

model to avoid numerical uncertainties interfering in the comparisons. For increasing lengths of 

cracks from zero to 50.8 cm, the FE model is executed to predict the natural frequencies (see 

Table 4.5 and Fig. 4.14) and the load carrying capacity (see Table 4.6 and Fig. 4.15) to study the 

changes in the response of the increasingly damaged dome models.  

The reductions in the natural frequencies due to the increasing levels of initial damage are 

presented in Fig. 4.14. Herein, the emphasis is on the same six modes presented earlier in Section 

4.4.2 (recall Table 4.4). Fig. 4.14 illustrates that the decrease in natural frequencies caused by the 

progression of cracks is more evident for the first mode. This observation is also confirmed for 

cracks distributed in an unsymmetrical manner where the first mode is consistently observed to 

be the most sensitive mode to crack development. 
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Table 4.5 Modal analysis solutions, natural frequencies (Hz). 

Health State Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

No Cracks (Healthy) 74.47 80.61 80.76 86.93 88.383 96.62 

12.7 cm (5 in) Cracks (4 each) 74.15 80.20 80.68 86.66 88.11 96.32

25.4 cm (10 in) Cracks (4 each) 72.01 78.92 78.93 82.58 84.039 96.14

38.1 cm (15 in) Cracks (4 each) 63.88 72.40 76.23 77.82 79.277 93.77

50.8 cm (20 in) Cracks (4 each) 53.86 66.36 75.53 75.96 77.418 87.48

 

Fig. 4.14. Natural frequencies of the five health conditions. 

Using the FE models developed with cracks of increasing length, static analysis is conducted as 

discussed in Section 4.5.2 with a distributed load applied at the crown. FE model is used to 

calculate the reduction in the load carrying capacity of the dome that is increasingly damaged 

with cracks. A comparison between the load-carrying capacities of the damaged and undamaged 

domes is plotted in Fig. 4.15.  
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Fig. 4.15. Comparison of load-carrying capacity of damaged and undamaged models. 

To evaluate the influence of the damage on the structural strength of the dome, ultimate load-

carrying capacity, displacement at the ultimate load and stiffness are extracted from the load vs. 

displacement diagrams (Table 4.6). Ultimate load carrying capacity is determined by the yielding 

point, beyond which the dome further displaces without an increase in load. The stiffness is 

calculated as the slope of an imaginary line between the origin and this yielding point where 

ultimate load carrying capacity is reached. Table 6 shows that a 12.7 cm (5 in) crack has little 

influence on the load-carrying capacity and stiffness of the dome and causes only a 0.15% 

reduction in load carrying capacity and a 0.36% reduction in stiffness. After the length of the 

crack increases from 12.7 cm (5 in) to 25.4 cm (10 in), however, a clear drop in both the load-

carrying capacity and stiffness of the structure becomes evident where the load carrying capacity 

is reduced by 26.4% and stiffness is reduced by 26.6%. 
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Table 4.6 Comparison of the simulated mechanical behavior of the dome. 

 Health State Healthy 
12.7 cm    

(5 in) 

25.4 cm 

(10 in) 

38.1 cm 

(15 in) 

50.8 cm 

(20 in) 

Capacity (N) 3960.16 3954.40 2913.21 2834.26 2750.42 

Ultimate displacement (mm) 0.62 0.62 0.62 0.62 0.63

Stiffness (kN/m) 6397.15 6373.94 4690.48 4554.49 4365.74

 

4.6.4    Formalizing a semi-empirical relationship  

Due to the unavoidable limitations in computational resources, the relationship between 

reduction in the first natural frequency and the load carrying capacity is simulated only at a 

limited number of discrete crack lengths. However, it is of interest to estimate this relationship 

for all levels of crack severity including the crack lengths for which simulations are not obtained. 

This relationship should of course be defined conservatively, meaning that the reduction in the 

load carrying capacity must not be underestimated.  

The semi-empirical relationship trained using solely the data presented in Fig. 4.14 and 

4.15 would of course be only valid for the tile dome studied herein, since such semi-empirical 

relationship is expected to vary depending on the material properties, boundary conditions and 

geometric characteristics. However, by incorporating material properties and geometric 

characteristics in the training process, this relationship can be made more generally applicable. 

To demonstrate the concept, here we study the spherical domes with varying span-to-rise ratios; 

however future study must be conducted to incorporate different material properties and 

boundary conditions.  
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Many mathematical functions can be implemented to define this relationship; preference 

of one over the other can be determined by the errors associated with the fit as well as the 

robustness of the fit. As stated by the Weierstrass’ approximation theorem, any real-valued 

continuous function are approximated on a closed and bounded interval by polynomials given in 

a generic form in Eq. 3, to any desirable degree of accuracy by increasing the polynomial order, 

(Atkinson and  Han (2009), Mastroianni and Milovanovic (2008)).  

1
2

p
j

j
j

a a 


            (3) 

Eq.3 presents a power function in which power of   can take any real value. In polynomials, 

these powers are non-negative integers. 

( 1) ( 2) ( 3)
1 2 3 4 5a a a a a                     (4) 

where   is the reduction in load carrying capacity (a quantity that is hard to measure),   is the 

reduction in the natural frequency (a quantity that is convenient to measure),   is the height-to-

span ratio. Recognizing that 0   and 0  , and enforcing 0a   the polynomial given in Eq. 

(4) will be monotonic and strictly increasing in nature and therefore suitable for our application 

as higher reduction in natural frequencies should indicate a higher degradation in load carrying 

capacity. 

To train an emulator representing the semi-empirical relationship, we seek for the 

coefficients a of the Eq.4. In doing so, we minimize the objective function defined as sum of the 

square of the differences between the emulator and available simulation data points as shown in 

the following optimization problem: 
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where Obj  is the objective function , 1 2 5, ,...,a a a  are coefficients of the power function that are 

considered as optimization variables and N is the number of available simulation data points. 

Additional constraints are assigned to assure that the load carrying capacity reduction in the 

emulator is always higher than the simulated results such that the emulator is a conservative, 

upper-bound. We used MATLAB’s fminsearch function for the optimization problem (Lagarias 

et al, 1998). For the dome studied herein, the coefficients are obtained to be α1=3.78, α2=18.98, 

α3=6.45, α4=1.47 and α5=3.46. The power function obtained with these coefficients supply a 

conservative, upper bound as depicted in Figure 16 (left). 

 

 

 

 

Fig. 4.16. (Left) Span-to-height ratio of 0.21; (Right) Span-to-height ratio of 0.35 representing the dome 

studied herein. 

Fig. 4.17 demonstrates the three-dimensional plots of the functional relationship defined in Eq. 

(3) for domes of same thickness but with height-to-span rations varying from 0.15 to 0.50. This 

functional form, given in Eq. (3) and demonstrated in Fig. 4.17 can be improved by increasing 

the number of simulation runs and can be made more generally applicable by considering the 

different thicknesses, boundary conditions and materials that can be used for masonry domes. 
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Therefore, the semi-empirical relationship presented herein should be considered to be for 

demonstration purposes only.  

 

Fig. 4.17. The semi-empirical formulation. 

4.7 Conclusions  

Damage to a structural system causes degradation in not only the strength but also the 

stiffness of the structure. The degradation in strength manifests itself as reduced load carrying 

capacity; while degradation in stiffness influences the increased deformations. For instance, a 

damaged structure becomes less stiff compared to its healthy counterpart, and thus deforms more 

under the same loading condition. Similarly, a damaged structure can be expected to have lower 

natural frequencies compared to its healthy counterpart.  

Measuring the reduction in load carrying capacity due to the presence of damage requires 

some form of destructive testing and thus in practical applications is not feasible. However, the 

vibration characteristics, which are also sensitive to the presence of damage, can be conveniently 

measured in a non-intrusive and non-invasive manner from an existing structure. If this indirect 

relationship between the reduction in load carrying capacity and changes in the vibration 

response can be determined for a structure, then by monitoring the vibration characteristics, 
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infrastructure managers can determine the remaining strength. Accordingly, the infrastructures 

can prescribe timely and efficient maintenance and rehabilitation campaigns preventing 

potentially unforeseen catastrophic failures of historic masonry monuments.  

In this manuscript first, considerable efforts are made to develop a FE model that is a 

sufficiently accurate representation of both the vibration characteristics (i.e. natural frequencies) 

and the load carrying capacity of a scaled laboratory dome built with AAC tile and plaster of 

Paris. For these purposes, natural frequencies measured during nondestructive tests and load-

displacement curves obtained during destructive tests are used to fine-tune the imprecise material 

properties of the FE model. The first natural frequency of the dome is determined to be the most 

sensitive mode to crack propagation. Next, the calibrated FE model is used to predict the 

reduction in the load carrying capacity and in the first natural frequency of the dome as the dome 

is progressively damaged. The simulated damage pattern is in the form of four, symmetrically 

distributed discrete cracks. The damage severity is gradually varied from no cracks to four 50.8 

cm (20 in) cracks.  

The obtained simulation based results are used to train an emulator representing a 

conservative upper bound for the indirect relationship between the changes in vibration response 

and the reduction in load carrying capacity. This semi-empirical relationship is of course only 

valid for the tile dome studied herein and would vary depending on the material properties, 

geometric characteristics and type of the damage. In an attempt to make the obtained empirical 

relationship more generally-applicable, the relationship between strength and stiffness is studied 

for domes with varying span-to-rise rations. An emulator is trained that contains a variable for 

the span-to-rise ratios and the plotted for various geometric configurations. Future studies must 
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however follow to seek for generally applicable trends and relationships for varying material 

properties and damage types as well.  

In this study, the first mode frequency exhibited the greatest sensitivity to the 

development of cracks and therefore used as the basis for the development of the aforementioned 

empirical relationship. However, even for domes with similar geometric properties, the most 

sensitive mode may vary depending on the cause and type of damage, i.e. differential support 

settlements may cause a different damage scenario than a distributed load on the crown to which 

a mode other than the first mode might be more sensitive. One approach to ensuring sensitivity 

to a wide range of damage scenarios that the domes studied herein may experience is to develop 

the empirical relationship considering all six modes as proposed (Prabhu and Atamturktur, 

2011), where assimilation techniques are utilized to increase the sensitivity to damage. 

This manuscript introduces a novel concept that can ultimately be applied to a wide range 

of structures. Of course, such empirical relationship between strength and stiffness will need to 

be defined for various structure types in future applications. When successfully developed and 

validated, such empirical relationship has the potential to improve the serviceability assessment 

of existing structures. 
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CHAPTER FIVE 
LONG TERM MONITORING OF HISTORIC MASONRY MONUMENTS: 

DEVELOPMENT AND DEPLOYMENT OF WIRELESS SENSOR NETWORK  

 

5.1    Introduction 

Vibration based structural health monitoring (SHM) is widely applied for non-destructive 

assessment of civil infrastructure systems including historic monuments. The applications of 

SHM range from short-term deployment for condition assessment after an extreme event, such as 

an earthquake, to long-term deployment for the assessment of gradual structural degradation. The 

advantage of long-term deployment is twofold in that it serves to monitor gradual incremental 

degradation as well as to instantly assess the structural condition after an event such as an 

earthquake or a hurricane.  

The foremost goal of SHM is human safety. By providing early warning of damage, SHM 

can prevent sudden catastrophic failures. A potential advantage of SHM is the ability to detect 

damage that can be missed during a routine visual inspection especially when the damage or its 

extent is not manifested on the exterior. Another benefit of deploying a long-term SHM system is 

that SHM can detect anomalies that occur in between routine visual inspections. In addition, the 

visual inspections tend to be subjective in that the results may vary drastically between 

inspectors. SHM provides a means for effectively evaluating the condition of the structure 

without objective interpretation of the inspectors.  

The governing theory behind vibration-based SHM is that modifications to a structure, in the 

form of damage or retrofit, cause changes in the structure’s stiffness, mass and damping, which 

in turn modifies the vibration characteristics of the structure. In SHM applications, typically a 

network of sensors is deployed on the structure that monitors the structural vibrations in terms of 
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displacement, velocity or acceleration. The high-dimensional raw time-series data from the 

sensors are then post-processed to yield low-dimensional features that are indicative to onset and 

development of damage. Traditional SHM campaigns have consisted of wired systems to allow 

for the sensors to communicate with the data-acquisition system. However, the coaxial cables 

used not only require expensive and labor-intensive installation, but also pose problems in term 

of maintenance (Lynch and Loh 2008; Kottapalli et al. 2003). In recent years, wireless sensor 

systems have gained the attention of the SHM community due to their relatively inexpensive cost 

of installation and autonomous operation, which can minimize the need for human interference. 

Recent studies have investigated the use of wireless sensors for such systems as civil 

infrastructure (Lynch 2006), aircrafts (Gause et al. 1999), and offshore structures (Li et al. 2003; 

Ou and Li 2003).  

Developing a wireless sensor network and data pipe requires a close integration of expertise 

from computing science and civil engineering. Specifically, platform developers must balance 

the needs of the vibration data processing algorithms with the energy constraints of the system, 

the limitations of radio propagation, and inherent hardware restrictions. In this report, the authors 

present the development and deployment of a wireless sensor network designed to monitor 

ambient vibrations in a casement of historic Fort Sumter, an unreinforced masonry coastal 

fortification.  

This document begins with a brief overview of Fort Sumter National Monument in Section 2 

followed by a literature review of wireless sensor networks in Section 3. Section 4 discusses the 

wireless sensor system developed by the Clemson research team and further details regarding 

how the system remotely transfers data and performs online monitoring is presented in Section 5. 
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Next, Section 6 investigates the use of wireless sensors by comparing their measurements with 

wired sensors. Finally, concluding remarks are provided in Section 7.  

5.2    Fort Sumter National Monument 

Fort Sumter is a pre-Civil War Era sea fort located in Charleston Harbor, South Carolina. 

This historic monument is best known for the Battle of Fort Sumter, the event which began the 

American Civil War in 1861. The fort is a five-sided masonry structure built on a man-made 

sand-bar. 119 years after the initial construction of the fort began Fort Sumter was declared a 

national monument (National Park Service 1984). For more information regarding Fort Sumter, 

the reader is invited to visit Section 3.4.1.   

5.3    Background 

Typical wireless sensor networks consist of a sensing interface, a computational core, 

wireless receivers and occasionally an actuation interface (Lynch and Loh 2008). The sensing 

interface is responsible for collecting measurement data while the computational core stores, 

processes, and prepares the data for analysis. The wireless receiver is arguably one of the most 

important aspects of the wireless sensor network, as it not only enables the sensors to 

communicate but also allows the system to remotely transfer the collected data.  The actuation 

interface, which includes a digital-to-analog converter, controls the sensors.  

The three most widely used types of wireless network topologies for SHM are (a) star, (b) 

peer-to-peer, and (c) two-tier. (Figure 5.1).  The wireless sensor system developed at Clemson 

University is of a star network (Figure 5.1.a). In this configuration, the sensors are able to 

communicate with the base station at the central node but are unable to communicate with each 

other. In a peer-to-peer configuration (Figure 5.1.b), all sensors share equal responsibilities – the 

networking is distributed evenly in the application. For a two-tier network (Figure 5.1.b), two 
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different carrier frequencies are present – one for short range, low data rate and a second for far 

range, high data rate.  

 

Fig. 5.1. Wireless network topologies 

One main concern for wireless sensing networks is power consumption. Most remote sensing 

units are powered by batteries and as such, are unable to effectively transmit data over long 

ranges for extended periods of time. Because of this limitation, researchers have investigated 

alternative power supplies for wireless sensors including solar power and battery-free radio-

frequency identification (RFID) sensors with promising results (Lynch and Loh 2008).  

 5.4    Wireless Sensor System  

As a first step toward lower cost, long-term monitoring of historic masonry structures, the 

project team has developed a network of wireless vibration sensors for use at Fort Sumter 

National Monument.  
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5.4.1 			System Configuration 

The network consists of two different types of devices:  

1) Vibration sensors that measure the magnitude of the attached masonry structure’s 

accelerations, 

2) A base station that receives gathered measurements and delivers the data, over the 

Internet, to a server on Clemson University’s campus, where it is made available for analysis.  

The following paragraphs describe the design of the hardware and software components of 

these devices. 

 

Fig. 5.2. Key components of the wireless sensor nodes 

The vibration sensors consist of three core components, shown in Figure 5.2. The 

processing core—based on the ultra-low power MSP430 processors provided by Texas 

Instruments—serves as the central processor, which manages both the gathering and delivery of 

acceleration data. Data is sampled using a sensing board that consists of a Silicon Designs model 

1521 accelerometer, along with additional circuitry for signal filtering and amplification, and for 

converting analog measurements to digital values. Finally, data is transmitted wirelessly using a 

short-range low-power CC2500 2.4GHz radio (also produced by Texas Instruments). These three 

components are connected using a standard SPI bus. 

Processing
TI MSP430 FR5739

Communication
CC2500 2.4GHz radio

Signal Conditioning

Accelerometer
Silicon Designs

1521
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The wireless sensors are powered from a solar panel that provides up to 6V (open circuit 

voltage) and 70mA (closed circuit current), and a 1.75AHr Lithium Ion rechargeable battery that 

allows operation to continue at night and other times when solar energy isn’t prevalent.  

 

 

Fig. 5.3. Key functional components of the base station 

The base station, as shown in Figure 5.3, shares many of the same components as the 

sensor nodes. Specifically, it includes the same CC2500 radio and MSP430FR5739 processor to 

simplify communication with the wireless sensors. A Beaglebone Black—an open source single-

board computer—is used to connect the data gathered from the sensors to the Internet, over 

which data is delivered to our server, which is located at the following domain: 

ftsumter.cs.clemson.edu. The base station currently relies on wired power and a wired 

connection (Ethernet) to the NPS network; however, the base station could easily be made 

wireless, as well—requiring an additional solar panel, battery, and battery charging circuitry, and 

WiFi access to the NPS network. The Beaglebone Black is also configured to be accessible 

remotely via SSH, which allows us to reconfigure the network remotely. Appropriate system 

security is provided to prevent unauthorized access. Figure 5.4 shows the system.  

Sensor Interface
TI MSP430 FR5739

Sensor
Communication

CC2500 2.4GHz radio

Internet Interface
Beaglebone Black

The Internet
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Fig. 5.4. Wireless sensor system. Note that the solar panel and Lithium Ion rechargeable batteries 

are not shown. 

As seen in the figure, an additional part, the reference accelerometer, is shown. This 

device is used in laboratory testing to compare and verify the data acquired by the Silicon Design 

model 1521 accelerometer. Since reprogramming a wireless sensor node requires physical 

access, the project team designed the software to allow important parameters such as sensitivity 

and sampling frequency to be configured wirelessly by the base station. To reduce the 

complexity and improve the battery life of the wireless sensor nodes, the scheduling of data 

collection is controlled by the base station.  

To conserve energy, the sensor nodes remain in sleep mode the majority of the time, 

while periodically exiting sleep mode to query the base station for new instructions and 

synchronization information. The sensor nodes then go back to sleep mode until they are 

MSP430 Processor 

Silicon Design Model 
1521 Accelerometer 

CC2500 2.4GHz Radio 

Reference 
Accelerometer 
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required (by the base station) to collect data. When the time to gather a series of sensor readings 

arises, the sensor nodes exit sleep mode, turn on the sensor board and accelerometer, and begin 

storing readings. When the sensor has gathered the requested number of readings, the sensor 

waits for its time slot (determined by the base station) at which time it transmits the gathered 

data to the base station using the CC2500 radio. The base station’s algorithm determines ideal 

time slots for each sensor node based how much vibration data is acquired. These time slots are 

fine-tuned to reduce data loss due to radio interference. 

5.4.2 			System Validations 

 
 A validation test set-up was developed at Clemson University to investigate the reliability 

of the wireless sensor system.  To validate the design, an experimental campaign was performed 

in which the wireless sensors were evaluated in comparison to wired sensors. The wired sensors 

were PCB seismic model 393B04. Table 5.1 gives the appropriate specifications of the sensors.  

Table 5.1: Wired Sensor Specifications 

Model 
PCB 393B04 Seismic, 
miniature, ceramic flexural 
accelerometer 

Sensitivity (±10 %) 102 mV/(m/s²) (1000mV/g) 
Measurement Range ±49 m/s² pk (±5 g pk) 
Frequency Range (±5 %) 0.06 to 450 Hz 
Frequency Range (±3 dB) 0.02 to 1700 Hz 
Overload Limit (Shock) ±300 g pk 
Temperature Range -18 to +80 °C (0 to +176 °F) 

 

Two different tests were performed: (a) ambient testing and (b) shaker table testing. For 

both tests, two wired sensors and one wireless sensor were evaluated. One wired sensor was 

mounted to the side of the wireless sensor while the second wired sensor was mounted behind 
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the wireless sensor. This setup, which is shown in Figure 5.5, was to eliminate the measurement 

error caused by the different locations of the sensors.  

 

Fig. 5.5. Shaker Table Experimental Setup 

For the ambient testing, data was recorded for a period of five seconds without any external 

excitation. Figure 5.6 shows a comparison time history plot for the two types of sensors.  

 

Fig. 5.6. Time History Plot for Wired (Blue) and Wireless (Red) Sensors for Ambient Testing 
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 For the shaker table testing, a random vibration input signal was applied to the sensors for 

one minute and the data was recorded.  

 

Fig. 5.7. Time History Plot for Wired (Blue) and Wireless (Red) Sensors for Shaker Table 

Testing 

To help the reader better understand the information presented in Figure 5.7, Table 5.2 represents 

statistical values to show how well the sensors data agreed. As one can see the maximum 

acceleration for the wireless sensor does not match that of the wired sensor. It is believed that the 

wireless sensors have a better filter than the wired ones and therefore they smooth out the 

extreme values that the wired sensors are capturing.  
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Table 5.2. Comparison of Sensor Statistical Values 

Sensor Wireless (Red) Wired (Blue) 

Maximum Acceleration (m/s2) 1.4806 2.8757 

Mean Acceleration (m/s2) 0.0000 0.0000 

Standard Deviation 0.2218 0.2681 

 In addition to the shaker table testing, the ability of the wireless sensors to accurately 

under impact was evaluated as well. Figure 5.8 represents the findings from impact testing. As 

seen from the figure, the wireless sensors performed exceptionally well.  

 

Fig. 5.8 Time History Plot for Wired (Blue) and Wireless (Red) Sensors for Impact Testing 

5.5    Remote Data Transferring and Online Monitoring  

The base station runs services to maintain a persistent connection and periodically transfer 

data to the on-campus server. These services use tried and tested Linux utilities (Rsync, 
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AutoSSH) to ensure that connectivity is maintained and data is transferred reliably in the case of 

random network or power failures. A web service running on the campus server graphs the data 

and provides important information to provide a bird’s eye view of overall system health. Figure 

5.9 shows a sample of the website that is maintained for remote data transferring.  

 

Fig. 5.9. Sample of Remote Data Transferring 
 

5.6    Fort Sumter Measurement Data 

Currently, a long term SHM system is being deployed on the Salient Angle casemates of 

Fort Sumter. This region is chosen because apparent settlement between the exterior wall and the 

arch pedestals has been reported. Also, due to the removal of the vaults on the left-face, a portion 

of the thrust from the right-face is believed to remain unresisted, resulting in stresses in the 

masonry that may be detrimental in the long-term. Severe cracking of the vaults is also observed 

in this region. The casemates covered under the SHM deployment are shown in Figure 5.9. 



93 
 

93 
 

 

Fig 5.10. Roof plan of Fort Sumter highlighting the casemates on which the SHM system is 

deployed. 

To preserve the aesthetics of the fort, it is important that the SHM hardware is as non-

intrusive as possible to public view as well as non-obstructive for people walking through the 

casemates. The 3 sensors installed are out of the reach of tourists to avoid accidental damage or 

vandalism. Also, the hardware is protected from the elements and resistant to extreme events 

such as flooding. The sensors are mounted using a removable adhesive that will not harm the 

masonry surface in any manner. In addition, the mounting plates that go between the sensor and 

the masonry surface match the color of the masonry to make the system more non-intrusive to 

view. 

To date, the 3 sensors are working well. Data that has been collected is not only remotely 

transferred to a real-time website, but is also stored and processed in Matlab. Figure 5.11 shows 

a reading from sensor 3, taken on July 31, 2014 at Fort Sumter.  
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(a) 

 

(b) 

Fig. 5.11. Collected Data from Sensor 3 at Fort Sumter for (a) 30 second window and (b) 5 

second window 



95 
 

95 
 

 5.7    Conclusion 

  A long-term SHM Traditional SHM campaigns with wired cables can be expensive, time 

consuming, and distracting. Wireless sensor networks have quickly become an attractive solution 

for such problems since they have a relatively inexpensive cost of installation, are non-invasive, 

and allow for minimal human interference through their autonomous operation.  

This manuscript investigates the use of wireless sensors in a long-term SHM deployment 

on Fort Sumter. The development of the wireless sensor network built at Clemson University is 

first described. To validate the system, initial testing was performed in the lab to compare the 

wireless sensors with wired sensors. After the system was confirmed to provide desirable results, 

the system was installed on Fort Sumter. Currently, tests are being executed on the fort to study 

the behavior of the structure.  

The wireless sensor system developed is proving to be a valuable endeavor. The 

automated system of data collection and transmission requires minimal human intervention and 

allows for remote viewing of the collected data and extracted features over the internet. To date, 

this long-term SHM deployment on Fort Sumter has provided satisfactory results.  Further 

monitoring of the coastal fort will continue to produce needed information about the condition of 

the structure so that preservation and rehabilitation campaigns can be successfully implemented.  
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CONCLUSIONS 
 
 

This report has first examined the necessary considerations in applying prognostic 

methodologies to forecast the future health state of historic masonry monuments. An evaluation 

of common masonry degradation schemes and the capabilities of existing prognostic frameworks 

suggests that forms of degradation appropriate for prognosis of historic masonry must be gradual 

in nature. One example of such degradation, which is studied in this report, is settlement induced 

damage resulting from differential support settlement. Such foundation settlement is common in 

masonry structures due to the heaviness of masonry materials. Periodic inspection techniques 

assessing these damages, to be applicable to prognosis, must provide quantitative measurements, 

be as sensitive as possible to the damage of interest, and reflect the global (rather than local) 

behavior of the structure eliminating the need for a priori knowledge of damage location. To be 

incorporated in a monitoring process, these inspection techniques must be conducted in an 

automated manner. However, these in situ measurements are often susceptible to detecting the 

responses of the structure to extraneous load conditions other than the primary loads of interest, 

thus corrupting the measurements with noise. Therefore, the prognostic technique chosen should 

attempt to eliminate the effect of this noise on predictions.  

A prognostic technique known as Support Vector Regression (SVR) is particularly 

suitable for in situ prognostic evaluation of masonry not only because of its ability to handle 

nonlinearity in measurements, but because of its ability to avoid overfitting to noise when 

training a prediction model. In SVR, the introduction of flatness in the prediction model 

decreases the model sensitivity to noise, thereby making the model more generalizable.  In this 

report, SVR, which traditionally trains a prediction model with a predetermined constant degree 

of model complexity (or flatness), is enhanced to determine the optimal complexity of the model 
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and allow the optimal complexity to be updated over time. In contrast to existing approaches that 

focus on improving the fitting accuracy, the approach proposed herein calculates the optimal 

complexity of the model based on forecasting accuracy. The adaptive selection of optimal 

flatness also increases the model robustness to variations in noise levels that might occur over 

time. When implemented in prognostic evaluation of a historic masonry coastal fortification, Fort 

Sumter, the adaptively weighted approach outperformed the non-weighted approach in 

forecasting accuracy. 

As the application of this adaptively weighted Support Vector Regression technique for 

prognostic evaluation of Fort Sumter is among first efforts in applying prognostics to historic 

masonry, future research is necessary to further the potential of such prognostic evaluations. In 

this report, simulated strain measurements are exploited for development of the prediction 

model. In the future, studies should be conducted to determine the most sensitive features to the 

damage type of interest for implementation in a prognostic framework. Moreover, a link between 

these non-destructively measured features and the remaining load carrying capacity of the 

structure, an aspect that can be measured only through destructive measurements, should also be 

identified. This link is necessary to develop a failure threshold defining the level of damage at 

which the structure reaches the end of its remaining useful life. With such information, timely 

maintenance campaigns can be planned. These important aspects, left out of the scope of this 

report, are essential for the future success of prognostic evaluation as applied to masonry 

construction.  

With the prognostic methodologies for application to historic masonry structures 

matured, prognostic evaluation of the remaining structural integrity of masonry monuments and 
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infrastructure can be implemented in a structural health monitoring process to provide early 

detection of damage and enable effective maintenance strategies of such cultural heritage. 
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